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CLASSIFICATION AND PROPERTIES OF A FAMILY

OF AXISYMMETRIC ONE-SOLITON SOLUTIONS.
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ABSTRACT: We study a two-parameter family of
stationary axisymmetric solutions of the Eiqstein
equations in vacuum, which were generated from
non-physical metrics by the inverse scattering
technique. By using the null tetrad formalism,
the family is found to contain Bel-Petrov types
I, II, D and Minkowski metrics. The Ernst poten-
tial of these solutions and the use}of prolate
spheroidal coordinates suggest new related fami-
iies of solutions which are asimptotically flat.
One of them contains the Zipoy-Voorhees metric
with deformation parameter 8= 1/2 as a particular

case.
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1. INTRODUCTION

Several generation techniques for finding new so-
lutions of the Einstein equations from known ones when
certain symmetries are assumed, have been developed in the
past few years. For a review of these techniques and their
relations see Cosgrove [1]. One such technique, developed
by Belinsky and Zakharov {2] is based on the inverse scat-
tering method (soliton technique) which has been applied

to nonlinear equations in other fields of physics.

The soliton technique can be applied to the Eins-
tein equations in vacuum if one assumes the existence of
two commuting Killing vectors. It allows one to generate
the so called n-soliton solutions with an arbitrarily lar-
ge number of multipole parameters, depending on how large
n is, from given "seed" solutions. Thus, for instance, the
Kerr metric is the 2-soliton solution obtained from the

Minkowski seed.

The stationary axisymmetric 2n-soliton solutions
from the Minkowski metric have been studied by Belinsky and

Zakharov [3] and Alekseev and Belinsky [4].

The stationary axisymmetric (2n+l)-soliton solu-
tions can only be obtained from a seed with nonphysical sig-
nature. The reason is that the introduction of one soliton

produces a signature change in the metric.

In this paper we study the simplest of such solu-
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tions, namely, the stationary axisymmetric one-soliton so-
lutions deduced from a family of unphysical metrics. These
solutions can be considered as physical seeds for the ge-

neral (2n+l)-soliton solutions.

Our family of solutions depends on two parameters.
One of them, g, is related to the seed metric and is respon-
sible for the strength of the field, thus g =0 gives the
Minkowski metric. Here it is interesting to note that the
Minkowski metric has been generated by the inverse scatte-
ring method from a nonphysical seed. The other parameter,
D, is related to the rotation of the field, thus when D +

the metrics become static.

In section 2 we use the null tetrad formalism [5]
to classify the family of solutions. Interesting cases are:
the member q =-1/2 corresponding to the Euclidean seed,
which is a solution of Bel-Petrov type I with an "extreme
rotation" limit belonging to the Van Stockum class of type
II [6]; the member q =0 which is Minkowski space and the
member g =1 which is a type D metric in its static limit
and can be compared to the Schwarzchild solution in some

regions of the space-time [6].

In section 3 we use the Ernst potentials to rela-
te our solutions to other known solutions. Using the sym-
metry of these potentials in terms of prolate spheroidal
coordinates we find some related asymptotically flat solu-

tions. The most interesting of those includes the Zipoy-
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Voorhees metric with deformation parameter § =1/2 which
can be interpreted as the external field of a rod. The
procedure used also suggests some possible physical in-

terpretation for the one-soliton metric.

2. CLASSIFICATION OF THE SOLUTIONS

The generation of a stationary axisymmetric so-~
lution of Einstein equations in vacuum with the soliton
technique requires the use of a seed metric. If we take

as seed the nonphysical metric:
2q2-1 1-2q 142
ds? =p 2 (dp2+dz?)+p ap2+p=7°9 a2 (1)

which can be reduced to the cosmological Kasner solution
by a complex coordinate transformation, the l-soliton so-

lution is the two-parameter family

2
- €0%% ch(qu+D)
Vpi+z2

ds? (ap2+dz?)

- 1__) (-2 gh(qu +%‘JJ +D)at2-p* % gh(-qp +%¢ -D)ap?

—20Ch %’_-dd)dt] (2)

eV = [2) : ;  u=-z+/p2+z?

where q and D are two arbitrary parameters.

In this section we shall use the null tetrad for-
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malism [5] to study solutions (2) in the Bel-Petrov classi-

fication.

First, we shall note that the q =0 solution is

Minkowski. In fact, by a rotation on the t¢~-plane of angle
1
6 =-3 arcotg(Sh D)

the metric takes the form:

1
92+22

ds? = (Ap?+d2?)+(z+/pT+22) ddp2~ (z+/pZ+27) At 2 (3)
which by the coordinate change,
R = [(z2%4p2)}24z]V2
Z =Cht [(z2+p2)1/2_z)1/2 (4)
T = Sht [(zz,,_pz)l/z_z]uz
can be reduced to
ds? =drR? +dz% +R%d¢? -aT?
Therefore the inverse scattering technique generates the

Minkowski metric from a nonphysical seed that can be dedu-

ced from the "isotropic" (q =0) Kasner metric.
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Now, for the general case, we shall use the null
tetrad formalism. It is convenient to write the general form

of a stationary axisymmetric metric as:

as? = 2 e"?Faxaz + 22 [g1a¢3- (s - T)agdt - at?] (5)
S+T
with:
o 1 2 3 _
x=p+iz ; (x ,x ,x ,x) = (¢t, x, X,0)

where F, H, S and T are independent real functions of ¢ and

t. Taking the null tetrad as.

. ~1/2

1, = 205 4+ 107711, 0, 0, 8)
H/2 ~1/2

nu = e (s +T) (1, 0, 0,-T)

m, = e Fw, 1,0, 0

and using the Newman-Penrose equations [5], we find the pro-

jections of the Weyl tensor:

e2F 282
Yo= - m—(sxx + ZFXSX + HxSx - x_)
S+T
2F 2
*
Yo= - S— (Tyy + 2F, T, + BT = EEE ) (6)
S+T S+T
e | L« 1
VYo= = —-— [H. = + 2F. o + ———_(S_T., - 5S_.T=)
S+T XX xX (S+T)2 X% XX

From where the Bel-Petrov type can be deduced for the me-
tric (2). In general these solutions are of type I with
the exception of flat space (g = 0); Van Stockum (g = -1/2,
D = 0) which is type II [ 6] and g = 1 in its static li-
mit ( D»%) which is type D. We shall study now the last
case in some detail.

The functions (6) are particularly simple in the static

limit:
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—2g2— -qy
vo = ¥y = - L 72971 e 7T 5 4 sn?y/2 - 3gshy/2chy/2
2B Chy/2 :
+ 3i(Shy/2 - gChy/2)] (7)

2
¥, = —2‘1— 0729 "1™ (shy/2 - qChy/2)
B

Now, the Russell-Clark algorithm [7] can be easily applied
and one finds that all solutions are type I with the flat
exception g = 0, and q = 1 which turns out to be type D.

This last metric can be written as:

-y/2
gs? = B p2e? (Ap2+dz?) + & d¢? - pae‘wzdt2 (8)
}pz+ z2 [

and it can be studied by considering their curvature scalars,

The only independent curvature scalar is:

I=12v2 = —_-2—3- (9)
B 1

whose meaning can be better understood by using spheroidal

coordinates:
p = 0(x2 _1)1/2(1_Y'2)1/2

Z = OXy g = constant (10.a)

which are related to the Boyer-Lindquist coordinates (r,6)
by: OX=r-nm

cosf (10.b)

b4

The curvature scalar (9) in the limit at large r can be

" written as:

3 (11)

B2 r6(1 - cose)6
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which one can compare with the Schwarzschild curvature

escalar:

suggesting a physical interpretation for the constant B.

The curvature scalar (11) is singular for 6 = 0 thus
the solution (8) is not asimptotically flat. It would be
interesting to study whether there is an asimptotically
flat solﬁtion which can be aproximated by the solution (8)
in some regions of the spacetime in a similar way as this
is possible for the Kinnersley-Kelly [8] metrics.

We note that in general the curvature scalars behave in

2
terms of r like r~ (29" +1)

therefore for large q the field
vanishes quickly. The meaning of the parameter g becomes

now clear.

3. RELATED ASYMPTOTICALLY FLAT SOLUTIONS.

The study of stationary axialsymmetric fields in
terms of the Ernst [9] formulation has been most fruitful
in the search for new solutions and for their physical in-
terpretation. Here we will consider the Ernst formulation
in order to relate the one-soliton solutions (2) to other
known solutions. We will see also that the simplicity of
the relevant Ernst potentials suggests new related families
of asymptotically flat solutions. The Ernst potential for

the two-parameter family (2) can be calculated to be:
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1+2q 1 i

= —f—— (shl(g+p)v + D] - 2 /57F %) (12)
Ch (qy+D) P

The "static" limit (D + «) of (12) reduces to the following

trivial family of Weyl (non flat) solutions:
e = pp29 (13)

which are obtained by combining the flat solutions ¢ = u
and € =p [7] .

The one-soliton solution (2) can thus be interpreted as
the stationary generalization of the particular sgatic Weyl
family (13).

For q =~1/2 the Ernst potential is particularly interes-
ting since in terms of prolate spheroidal coordinates (10),
and taking the limit for x large, it reduces to.

(1 - y®)¥ 4+ dnyly (14)
Yy +vy

with vy = Coth D and n = (y2 - 1)12
This potential, which we have obtained as a limit of (12),
is also a solution of the Ernst equation. This can be seen

easily by defining another Frnst potential £

£ = 1=€
1+¢

and checking that the Ernst equation [7],

2 2
(Ee*-D (x"-1)g, 1, + (1-y )E,y],y} =

= 2000 (-1E, 2+ (1yP)e, ) (1%
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is verified by it.

The symmetry of equation (15) in the coordinates x and y
has been exploited by Tomimatsu and Sato [10]to find new
solutions. From any given solution £(x,y) of (15) one can
construct a new solution by commuting x and y. Therefore

from (14) we can construct the new solution:

2= -1
e = 1 ZX=T 40" 'x (16)

Y + x
and also, as it is easy to check, the static solution:

2= -1
e = X1 -y x (17)

Y + x

Both solutions are asymptotically flat. The last one (17)
contains the Zipoy-Voorhees metric
e = (X148 (18)
X+ 1
with deformation parameter § = 1/2 , when y =1, and a phy-
sical interpretation for it can be given.

In fact, Voorhees [11] gave a plausible physical inter-
pretation for the family (18) by comparing the family with
the member §= 1 which is the Schwarzschild metric. For the
Schwarzschild solution the coordinates (r,6) with ¢ = m can
be seen as spherical coordinates and (18) gives the field
of a point particle of mass m. In general the coordinates
adapted to the source have o =m/8 and by expanding € in
terms of (r,P) for large r, and comparing with the (sphe-
rical) Schwarzschild coordinates (o =m) the metrics (18)

can be interpreted as the external fields of rods (if &<1)
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of mass m. For § =1/2 the rod has length 4m.

For large x and finite y (17) can be expanded as

1

€ =1l-eyl-(l-ey)y %+[ (1-ey™' )y 2 -%1;1,—+

this asymptotic form can de reduced to the usual

2m . 1
< * (Polynomial in cos®)r+...

€=1-
by means of an Ehlers transformation (Cosgrove,[1]) which
will involve the parameter Y. Therefore the solution (17)
can be seen, at least asymptotically, as an Ehlers transfor-
mation, depending on Yy, of the Zipoy-Voorhees metric with
deformation parameter § =1/2.

The relation between the asymptotically flat solu-
tions and the non asymptoticaliy flat solution (14) is simi-
lar to that between the Zipoy-Voorhees metrics and the Kin-
nersley and Kelly [8] "extreme Kerr" solutions representing
a region of the Tomimatsu and Sato [10]lmetrics near to its
ergosphere. This seems to suggest that a similar interpre-
tation might be found for the one-soliton solutions with
q =-1/2 as describing some limited region of the external
field of rods, at least in the vy =1 limit.

One of us (E.V.) would like to acknowledge the
support of a fellowship from "Ministerio de Educacién y

Ciencia".
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