# SageMathCell online https://sagecell.sagemath.org/?q=cnucmv # xQ'_2,4. (15,3)=1215, Moore bound=3166. # Component with polarity of the cartesian product of the quocient of a quadrangle by a polarity by itself. # Found by C. Delorme. Large bipartite graphs with given degree and diameter. J. Graph Theory, 9 (1985) 325?334. # Ord.: 1215 / Size: 9045 / Diam.: 3 / Avg.dist: 2.86052 # 15-reg.? False / Degree histogram: [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 135, 1080] / Girth: 3 # # Aut.group.ord.: 51840 / Cayley ? False --- vtx.trans. ? False -- edge.trans. ? False # import networkx as nx del1215=Graph(r":~?Q~_?_??@_??@?A_??@?A?B_?_?_?_?_?_??D_?_?_?_?_@?E?J_@_@_@_@_@?E?J_@?O_@_@_@_A?F?K_A?P?U_A_A_A_A?F?K_A?P?U_A?Z_A_A_B?G?L_B?Q?V_B?[?`_B_B_B?G?L_B?Q?V_B?[?`_B?e_B_C?H?M_C?R?W_C?\?a_C?f?k_C_C?H?M_C?R?W_C?\?a_C?f?k_C?p_D?E?F?G?H_v_v_v_v_v_v_v_v_v_v_D?E?F?G?H`A`A`A`A`A`A`A`A`A`A_D?E?F?G?H`L`L`L`L`L`L`L`L`L`L_D?E?F?G?H`W`W`W`W`W`W`W`W`W`W_I?J?K?L?M`b`b`b`b`b`b`b`b`b`b_I?J?K?L?M`m`m`m`m`m`m`m`m`m`m_I?J?K?L?M`x`x`x`x`x`x`x`x`x`x_I?J?K?L?MaCaCaCaCaCaCaCaCaCaC_N?O?P?Q?R?w?x?y?z?{@c@d@e@f@g_N?O?P?Q?R@B@C@D@E@F@n@o@p@q@r_N?O?P?Q?R@M@N@O@P@QADAEAFAGAH_N?O?P?Q?R@X@Y@Z@[@\@y@z@{@|@}_]?^?_?`?a?w?x?y?z?{@s@t@u@v@w_g?h?i?j?k?w?x?y?z?{@~A?A@AAAB_q?r?s?t?u?w?x?y?z?{AIAJAKALAM_X?Y?Z?[?\@G@H@I@J@K@c@d@e@f@g_b?c?d?e?f@]@^@_@`@a@c@d@e@f@g_l?m?n?o?p@R@S@T@U@V@c@d@e@f@g_S?T?U?V?W?|?}?~@?@@@h@i@j@k@l_S?T?U?V?W@G@H@I@J@K@s@t@u@v@w_S?T?U?V?W@]@^@_@`@a@~A?A@AAAB_S?T?U?V?W@R@S@T@U@VAIAJAKALAM_]?^?_?`?a@]@^@_@`@aADAEAFAGAH_]?^?_?`?a@R@S@T@U@V@y@z@{@|@}_g?h?i?j?k@G@H@I@J@KADAEAFAGAH_q?r?s?t?u@G@H@I@J@K@y@z@{@|@}_g?h?i?j?k@R@S@T@U@V@n@o@p@q@r_q?r?s?t?u@]@^@_@`@a@n@o@p@q@r_]?^?_?`?a@B@C@D@E@F@h@i@j@k@l_g?h?i?j?k@X@Y@Z@[@\@h@i@j@k@l_q?r?s?t?u@M@N@O@P@Q@h@i@j@k@l_X?Y?Z?[?\?|?}?~@?@@@n@o@p@q@r_b?c?d?e?f?|?}?~@?@@@y@z@{@|@}_l?m?n?o?p?|?}?~@?@@ADAEAFAGAH_X?Y?Z?[?\@M@N@O@P@Q@~A?A@AAAB_X?Y?Z?[?\@X@Y@Z@[@\AIAJAKALAM_b?c?d?e?f@B@C@D@E@FAIAJAKALAM_l?m?n?o?p@B@C@D@E@F@~A?A@AAAB_b?c?d?e?f@M@N@O@P@Q@s@t@u@v@w_l?m?n?o?p@X@Y@Z@[@\@s@t@u@v@w_D?w?|_D@B@GAn_D@M@RAnAo_D@X@]AnAoAp_D?w?|_D@B@G_D@M@R_D@X@]_E?x?}_E@C@H_E@N@S_E@Y@^_E?x?}_E@C@H_E@N@S_E@Y@^_F?y?~_F@D@I_F@O@T_F@Z@__F?y?~_F@D@I_F@O@T_F@Z@__G?z@?_G@E@J_G@P@U_G@[@`_G?z@?_G@E@J_G@P@U_G@[@`_H?{@@_H@F@K_H@Q@V_H@\@a_H?{@@_H@F@K_H@Q@V_H@\@aanananananBVanananaoBWB[aoaoaoaoBWB[aoB_aoaoapBXB\apB`BdapapapBXB\apB`BdapBhapaqBYB]aqBaBeaqBiBmaqaqBYB]aqBaBeaqBiBmaqBq_I@c@hArAsAtAubvbvbvbvbvbvbvbv_I@n@sArAsAtAuc?c?c?c?c?c?c?c?_I@y@~ArAsAtAucHcHcHcHcHcHcHcH_IADAIArAsAtAucQcQcQcQcQcQcQcQ_N?w@cAvAwAxAyBVBWBXBYBwBxByBz_N@B@nAvAwAxAyB^B_B`BaC@CACBCC_N@MADAvAwAxAyBfBgBhBiCRCSCTCU_N@X@yAvAwAxAyBnBoBpBqCICJCKCL_]?w@sBBBCBDBEBVBWBXBYCDCECFCG_g?w@~BJBKBLBMBVBWBXBYCMCNCOCP_q?wAIBRBSBTBUBVBWBXBYCVCWCXCY_X@G@cA~B?B@BABbBcBdBeBwBxByBz_b@]@cBFBGBHBIBrBsBtBuBwBxByBz_l@R@cBNBOBPBQBjBkBlBmBwBxByBz_S?|@hAzA{A|A}BZB[B\B]B{B|B}B~_S@G@sAzA{A|A}BbBcBdBeCDCECFCG_S@]@~AzA{A|A}BrBsBtBuCMCNCOCP_S@RAIAzA{A|A}BjBkBlBmCVCWCXCY_]@]ADBBBCBDBEBrBsBtBuCRCSCTCU_]@R@yBBBCBDBEBjBkBlBmCICJCKCL_g@GADBJBKBLBMBbBcBdBeCRCSCTCU_q@G@yBRBSBTBUBbBcBdBeCICJCKCL_g@R@nBJBKBLBMBjBkBlBmC@CACBCC_q@]@nBRBSBTBUBrBsBtBuC@CACBCC_]@B@hBBBCBDBEB^B_B`BaB{B|B}B~_g@X@hBJBKBLBMBnBoBpBqB{B|B}B~_q@M@hBRBSBTBUBfBgBhBiB{B|B}B~_X?|@nA~B?B@BABZB[B\B]C@CACBCC_b?|@yBFBGBHBIBZB[B\B]CICJCKCL_l?|ADBNBOBPBQBZB[B\B]CRCSCTCU_X@M@~A~B?B@BABfBgBhBiCMCNCOCP_X@XAIA~B?B@BABnBoBpBqCVCWCXCY_b@BAIBFBGBHBIB^B_B`BaCVCWCXCY_l@B@~BNBOBPBQB^B_B`BaCMCNCOCP_b@M@sBFBGBHBIBfBgBhBiCDCECFCG_l@X@sBNBOBPBQBnBoBpBqCDCECFCG_I@c@h_I@n@sCz_I@y@~CzC{_IADAICzC{C|_J@d@i_J@o@t_J@zA?_JAEAJ_J@d@i_J@o@t_J@zA?_JAEAJ_K@e@j_K@p@u_K@{A@_KAFAK_K@e@j_K@p@u_K@{A@_KAFAK_L@f@k_L@q@v_L@|AA_LAGAL_L@f@k_L@q@v_L@|AA_LAGAL_M@g@l_M@r@w_M@}AB_MAHAM_M@g@l_M@r@w_M@}AB_MAHAMarBwB{arC@CDarCICMarCRCVarBwB{arC@CDarCICMarCRCVasBxB|asCACEasCJCNasCSCWasBxB|asCACEasCJCNasCSCWatByB}atCBCFatCKCOatCTCXatByB}atCBCFatCKCOatCTCXauBzB~auCCCGauCLCPauCUCYauBzB~auCCCGauCLCPauCUCYczczczczczD~czczczc{E?ECc{c{c{c{E?ECc{EGc{c{c|E@EDc|EHELc|c|c|E@EDc|EHELc|EPc|c}EAEEc}EIEMc}EQEUc}c}EAEEc}EIEMc}EQEUc}EY_N?w@cC~D?D@DAD^D_D`DaD~E?E@EA_N@B@nC~D?D@DADfDgDhDiEFEGEHEI_N@MADC~D?D@DADnDoDpDqEVEWEXEY_N@X@yC~D?D@DADvDwDxDyENEOEPEQ_]?w@sDJDKDLDMD^D_D`DaEJEKELEM_g?w@~DRDSDTDUD^D_D`DaERESETEU_q?wAIDZD[D\D]D^D_D`DaEZE[E\E]_X@G@cDFDGDHDIDjDkDlDmD~E?E@EA_b@]@cDNDODPDQDzD{D|D}D~E?E@EA_l@R@cDVDWDXDYDrDsDtDuD~E?E@EA_S?|@hDBDCDDDEDbDcDdDeEBECEDEE_S@G@sDBDCDDDEDjDkDlDmEJEKELEM_S@]@~DBDCDDDEDzD{D|D}ERESETEU_S@RAIDBDCDDDEDrDsDtDuEZE[E\E]_]@]ADDJDKDLDMDzD{D|D}EVEWEXEY_]@R@yDJDKDLDMDrDsDtDuENEOEPEQ_g@GADDRDSDTDUDjDkDlDmEVEWEXEY_q@G@yDZD[D\D]DjDkDlDmENEOEPEQ_g@R@nDRDSDTDUDrDsDtDuEFEGEHEI_q@]@nDZD[D\D]DzD{D|D}EFEGEHEI_]@B@hDJDKDLDMDfDgDhDiEBECEDEE_g@X@hDRDSDTDUDvDwDxDyEBECEDEE_q@M@hDZD[D\D]DnDoDpDqEBECEDEE_X?|@nDFDGDHDIDbDcDdDeEFEGEHEI_b?|@yDNDODPDQDbDcDdDeENEOEPEQ_l?|ADDVDWDXDYDbDcDdDeEVEWEXEY_X@M@~DFDGDHDIDnDoDpDqERESETEU_X@XAIDFDGDHDIDvDwDxDyEZE[E\E]_b@BAIDNDODPDQDfDgDhDiEZE[E\E]_l@B@~DVDWDXDYDfDgDhDiERESETEU_b@M@sDNDODPDQDnDoDpDqEJEKELEM_l@X@sDVDWDXDYDvDwDxDyEJEKELEM_O?x@d_O@C@oE~_O@NAEE~F?_O@Y@zE~F?F@_O?x@d_O@C@o_O@NAE_O@Y@z_P?y@e_P@D@p_P@OAF_P@Z@{_P?y@e_P@D@p_P@OAF_P@Z@{_Q?z@f_Q@E@q_Q@PAG_Q@[@|_Q?z@f_Q@E@q_Q@PAG_Q@[@|_R?{@g_R@F@r_R@QAH_R@\@}_R?{@g_R@F@r_R@QAH_R@\@}avBVBwE~avB^C@E~avBfCRE~avBnCIE~avBVBwavB^C@avBfCRavBnCIawBWBxF?F_awB_CAF?awBgCSF?awBoCJF?awBWBxawB_CAawBgCSawBoCJaxBXByF@F`axB`CBF@FhaxBhCTF@axBpCKF@axBXByaxB`CBaxBhCTaxBpCKayBYBzFAFaayBaCCFAFiayBiCUFAFqayBqCLFAayBYBzayBaCCayBiCUayBqCLc~D^D~E~F^c~DfEFE~Ffc~DnEVE~Fnc~DvENE~Fvc~D^D~c~DfEFc~DnEVc~DvENd?D_E?F?F_G?d?DgEGF?Fgd?DoEWF?Fod?DwEOF?Fwd?D_E?d?DgEGd?DoEWd?DwEOd@D`E@FAFaGAd@DhEHFAFiGId@DpEXFAFqd@DxEPFAFyd@D`E@d@DhEHd@DpEXd@DxEPdADaEAF@F`G@dADiEIF@FhGHdADqEYF@FpdADyEQF@FxGPdADaEAdADiEIdADqEYdADyEQ_^?x@tFJFKFLFMF^F_F`FaGJGKGLGM_h?xA?FRFSFTFUF^F_F`FaGRGSGTGU_r?xAJFZF[F\F]F^F_F`FaGZG[G\G]_Y@H@dFFFGFHFIFjFkFlFmF~G?G@GA_c@^@dFNFOFPFQFzF{F|F}F~G?G@GA_m@S@dFVFWFXFYFrFsFtFuF~G?G@GA_T?}@iFBFCFDFEFbFcFdFeGBGCGDGE_T@H@tFBFCFDFEFjFkFlFmGJGKGLGM_T@^A?FBFCFDFEFzF{F|F}GRGSGTGU_T@SAJFBFCFDFEFrFsFtFuGZG[G\G]_^@^AEFJFKFLFMFzF{F|F}GVGWGXGY_^@S@zFJFKFLFMFrFsFtFuGNGOGPGQ_h@HAEFRFSFTFUFjFkFlFmGVGWGXGY_r@H@zFZF[F\F]FjFkFlFmGNGOGPGQ_h@S@oFRFSFTFUFrFsFtFuGFGGGHGI_r@^@oFZF[F\F]FzF{F|F}GFGGGHGI_^@C@iFJFKFLFMFfFgFhFiGBGCGDGE_h@Y@iFRFSFTFUFvFwFxFyGBGCGDGE_r@N@iFZF[F\F]FnFoFpFqGBGCGDGE_Y?}@oFFFGFHFIFbFcFdFeGFGGGHGI_c?}@zFNFOFPFQFbFcFdFeGNGOGPGQ_m?}AEFVFWFXFYFbFcFdFeGVGWGXGY_Y@NA?FFFGFHFIFnFoFpFqGRGSGTGU_Y@YAJFFFGFHFIFvFwFxFyGZG[G\G]_c@CAJFNFOFPFQFfFgFhFiGZG[G\G]_m@CA?FVFWFXFYFfFgFhFiGRGSGTGU_c@N@tFNFOFPFQFnFoFpFqGJGKGLGM_m@Y@tFVFWFXFYFvFwFxFyGJGKGLGM_T?}@i_T@H@tGz_T@^A?GzG{_T@SAJGzG{G|_U?~@j_U@I@u_U@_A@_U@TAK_U?~@j_U@I@u_U@_A@_U@TAK_V@?@k_V@J@v_V@`AA_V@UAL_V@?@k_V@J@v_V@`AA_V@UAL_W@@@l_W@K@w_W@aAB_W@VAM_W@@@l_W@K@w_W@aAB_W@VAMazBZB{FBFbGBazBbCDFBFjGJazBrCMFBFzGRazBjCVFBFrGZazBZB{GzazBbCDGzazBrCMGzazBjCVGza{B[B|FCFcGCa{BcCEFCFkGKa{BsCNFCF{GSa{BkCWFCFsG[a{B[B|G{H[a{BcCEG{a{BsCNG{a{BkCWG{a|B\B}FDFdGDa|BdCFFDFlGLa|BtCOFDF|GTa|BlCXFDFtG\a|B\B}G}H]a|BdCFG}Hea|BtCOG}a|BlCXG}a}B]B~FEFeGEa}BeCGFEFmGMa}BuCPFEF}GUa}BmCYFEFuG]a}B]B~G|H\a}BeCGG|Hda}BuCPG|a}BmCYG|HldBDbEBFBFbGBdBDjEJFBFjGJdBDzERFBFzGRdBDrEZFBFrGZdBDbEBGzHZdBDjEJGzHbdBDzERGzHrdBDrEZGzHjdCDcECFCFcGCdCDkEKFCFkGKdCD{ESFCF{GSdCDsE[FCFsG[dCDcECG{H[H{dCDkEKG{HcdCD{ESG{HsdCDsE[G{HkdDDdEDFEFeGEdDDlELFEFmGMdDD|ETFEF}GUdDDtE\FEFuG]dDDdEDG|H\H|dDDlELG|HdIDdDD|ETG|HtdDDtE\G|HldEDeEEFDFdGDdEDmEMFDFlGLdED}EUFDF|GTdEDuE]FDFtG\dEDeEEG}H]H}dEDmEMG}HeIEdED}EUG}HuIMdEDuE]G}Hm_^?x@tHBHCHDHEHVHWHXHYIBICIDIE_h?xA?HJHKHLHMHVHWHXHYIJIKILIM_r?xAJHRHSHTHUHVHWHXHYIRISITIU_Y@H@dG~H?H@HAHbHcHdHeHvHwHxHy_c@^@dHFHGHHHIHrHsHtHuHvHwHxHy_m@S@dHNHOHPHQHjHkHlHmHvHwHxHy_^@^AEHBHCHDHEHrHsHtHuINIOIPIQ_^@S@zHBHCHDHEHjHkHlHmIFIGIHII_h@HAEHJHKHLHMHbHcHdHeINIOIPIQ_r@H@zHRHSHTHUHbHcHdHeIFIGIHII_h@S@oHJHKHLHMHjHkHlHmH~I?I@IA_r@^@oHRHSHTHUHrHsHtHuH~I?I@IA_^@C@iHBHCHDHEH^H_H`HaHzH{H|H}_h@Y@iHJHKHLHMHnHoHpHqHzH{H|H}_r@N@iHRHSHTHUHfHgHhHiHzH{H|H}_Y?}@oG~H?H@HAHZH[H\H]H~I?I@IA_c?}@zHFHGHHHIHZH[H\H]IFIGIHII_m?}AEHNHOHPHQHZH[H\H]INIOIPIQ_Y@NA?G~H?H@HAHfHgHhHiIJIKILIM_Y@YAJG~H?H@HAHnHoHpHqIRISITIU_c@CAJHFHGHHHIH^H_H`HaIRISITIU_m@CA?HNHOHPHQH^H_H`HaIJIKILIM_c@N@tHFHGHHHIHfHgHhHiIBICIDIE_m@Y@tHNHOHPHQHnHoHpHqIBICIDIE_Z@I@e_Z?~@pIn_Z@OA@InIo_Z@ZAKInIoIp_Z@I@e_Z?~@p_Z@OA@_Z@ZAK_[@J@f_[@?@q_[@PAA_[@[AL_[@J@f_[@?@q_[@PAA_[@[AL_\@K@g_\@@@r_\@QAB_\@\AM_\@K@g_\@@@r_\@QAB_\@\AMa~BbBwFFFjF~a~BZC@FFFbGFa~BfCMFFFnGRa~BnCVFFFvGZa~BbBwG~HbHvIoa~BZC@G~HZH~Ioa~BfCMG~HfIJIoa~BnCVG~HnIRIob?BcBxFGFkG?b?B[CAFGFcGGb?BgCNFGFoGSb?BoCWFGFwG[b?BcBxH?HcHwInb?B[CAH?H[I?InJJb?BgCNH?HgIKInb?BoCWH?HoISInb@BdByFHFlG@IpJTb@B\CBFHFdGHIpJLb@BhCOFHFpGTIpb@BpCXFHFxG\Ipb@BdByHAHeHyb@B\CBHAH]IAb@BhCOHAHiIMb@BpCXHAHqIUbABeBzFIFmGAIqJUbAB]CCFIFeGIIqJMbABiCPFIFqGUIqJYbABqCYFIFyG]IqbABeBzH@HdHxbAB]CCH@H\I@bABiCPH@HhILbABqCYH@HpITdFDjD~FFFjF~InJRdFDbEFFFFbGFInJJdFDnERFFFnGRInJVdFDvEZFFFvGZInJ^dFDjD~G~HbHvdFDbEFG~HZH~dFDnERG~HfIJdFDvEZG~HnIRdGDkE?FGFkG?IoJSJgdGDcEGFGFcGGIoJKdGDoESFGFoGSIoJWdGDwE[FGFwG[IoJ_dGDkE?H?HcHwdGDcEGH?H[I?dGDoESH?HgIKdGDwE[H?HoISdHDlE@FIFmGAdHDdEHFIFeGIdHDpETFIFqGUdHDxE\FIFyG]dHDlE@H@HdHxIpJTJhdHDdEHH@H\I@IpJLJpdHDpETH@HhILIpJXdHDxE\H@HpITIpJ`dIDmEAFHFlG@dIDeEIFHFdGHdIDqEUFHFpGTdIDyE]FHFxG\dIDmEAHAHeHyIqJUJidIDeEIHAH]IAIqJMJqdIDqEUHAHiIMIqJYJ}dIDyE]HAHqIUIqJa__?y@uIrIsItIuJFJGJHJIJrJsJtJu_i?yA@IzI{I|I}JFJGJHJIJzJ{J|J}_s?yAKJBJCJDJEJFJGJHJIKBKCKDKE_d@_@eIvIwIxIyJbJcJdJeJfJgJhJi_n@T@eI~J?J@JAJZJ[J\J]JfJgJhJi__@_AFIrIsItIuJbJcJdJeJ~K?K@KA__@T@{IrIsItIuJZJ[J\J]JvJwJxJy_i@IAFIzI{I|I}JRJSJTJUJ~K?K@KA_s@I@{JBJCJDJEJRJSJTJUJvJwJxJy_i@T@pIzI{I|I}JZJ[J\J]JnJoJpJq_s@_@pJBJCJDJEJbJcJdJeJnJoJpJq__@D@jIrIsItIuJNJOJPJQJjJkJlJm_i@Z@jIzI{I|I}J^J_J`JaJjJkJlJm_s@O@jJBJCJDJEJVJWJXJYJjJkJlJm_d?~@{IvIwIxIyJJJKJLJMJvJwJxJy_n?~AFI~J?J@JAJJJKJLJMJ~K?K@KA_d@DAKIvIwIxIyJNJOJPJQKBKCKDKE_n@DA@I~J?J@JAJNJOJPJQJzJ{J|J}_d@O@uIvIwIxIyJVJWJXJYJrJsJtJu_n@Z@uI~J?J@JAJ^J_J`JaJrJsJtJu_d@_@e_d?~@{_d@DAK_d@O@u_e@`@f_e@?@|K^_e@EALK^K__e@P@vK^K_K`_e@`@f_e@?@|_e@EAL_e@P@v_f@a@g_f@@@}_f@FAM_f@Q@w_f@a@g_f@@@}_f@FAM_f@Q@wbFBrBwFNFzF~bFBZCIFNFbGNbFB^CVFNFfGZbFBfCDFNFnGJbFBrBwHFHrHvIwJcJgK_bFBZCIHFHZIFIwJKJwK_bFB^CVHFH^IRIwJOKCK_bFBfCDHFHfIBIwJWJsK_bGBsBxFOF{G?K`bGB[CJFOFcGOK`KtbGB_CWFOFgG[K`bGBgCEFOFoGKK`bGBsBxHGHsHwIvJbJfbGB[CJHGH[IGIvJJJvbGB_CWHGH_ISIvJNKBbGBgCEHGHgICIvJVJrbHBtByFPF|G@IxJdJhKabHB\CKFPFdGPIxJLJxKaKubHB`CXFPFhG\IxJPKDKaKybHBhCFFPFpGLIxJXJtKabHBtByHIHuHybHB\CKHIH]IIbHB`CXHIHaIUbHBhCFHIHiIEbIBuBzFQF}GAIyJeJibIB]CLFQFeGQIyJMJybIBaCYFQFiG]IyJQKEbIBiCGFQFqGMIyJYJubIBuBzHHHtHxK^bIB]CLHHH\IHK^KrbIBaCYHHH`ITK^KvbIBiCGHHHhIDK^K~dNDzD~FNFzF~IvJbJfK^LJdNDbENFNFbGNIvJJJvK^KrdNDfEZFNFfGZIvJNKBK^KvdNDnEJFNFnGJIvJVJrK^K~dNDzD~HFHrHvdNDbENHFHZIFdNDfEZHFH^IRdNDnEJHFHfIBdOD{E?FOF{G?IwJcJgdODcEOFOFcGOIwJKJwdODgE[FOFgG[IwJOKCdODoEKFOFoGKIwJWJsdOD{E?HGHsHwKaLMLQdODcEOHGH[IGKaKudODgE[HGH_ISKaKydODoEKHGHgICKaLAdPD|E@FQF}GAK_LKLOdPDdEPFQFeGQK_KsdPDhE\FQFiG]K_KwdPDpELFQFqGMK_L?L[dPD|E@HHHtHxIxJdJhdPDdEPHHH\IHIxJLJxdPDhE\HHH`ITIxJPKDdPDpELHHHhIDIxJXJtdQD}EAFPF|G@dQDeEQFPFdGPdQDiE]FPFhG\dQDqEMFPFpGLdQD}EAHIHuHyIyJeJiK`LLLPdQDeEQHIH]IIIyJMJyK`KtL`dQDiE]HIHaIUIyJQKEK`KxdQDqEMHIHiIEIyJYJuK`L@L\_`?z@vKZK[K\K]KnKoKpKqLZL[L\L]_j?zAAKbKcKdKeKnKoKpKqLbLcLdLe_t?zALKjKkKlKmKnKoKpKqLjLkLlLm_o@U@fKfKgKhKiLBLCLDLELNLOLPLQ_`@`AGKZK[K\K]LJLKLLLMLfLgLhLi_`@U@|KZK[K\K]LBLCLDLEL^L_L`La_j@JAGKbKcKdKeKzK{K|K}LfLgLhLi_t@J@|KjKkKlKmKzK{K|K}L^L_L`La_j@U@qKbKcKdKeLBLCLDLELVLWLXLY_t@`@qKjKkKlKmLJLKLLLMLVLWLXLY_`@E@kKZK[K\K]KvKwKxKyLRLSLTLU_j@[@kKbKcKdKeLFLGLHLILRLSLTLU_t@P@kKjKkKlKmK~L?L@LALRLSLTLU_o@?AGKfKgKhKiKrKsKtKuLfLgLhLi_o@EAAKfKgKhKiKvKwKxKyLbLcLdLe_o@[@vKfKgKhKiLFLGLHLILZL[L\L]_n@T@e_n?~AF_n@DA@_n@Z@u_o@U@f_o@?AG_o@EAA_o@[@v_p@V@g_p@@AHMF_p@FABMFMG_p@\@wMFMGMH_p@V@g_p@@AH_p@FAB_p@\@wbNBjBwFVFrF~bNBZCRFVFbGVbNB^CMFVFfGRbNBnCDFVFvGJbNBjBwHNHjHvJ?J[JgKgLCLOMGbNBZCRHNHZINJ?JKK?KgKsLgMGbNB^CMHNH^IJJ?JOJ{KgKwLcMGbNBnCDHNHnIBJ?J_JsKgLGL[MGbOBkBxFWFsG?KhLDLPMHbOB[CSFWFcGWKhKtLhMHMTbOB_CNFWFgGSKhKxLdMHbOBoCEFWFwGKKhLHL\MHbOBkBxHOHkHwI~JZJfbOB[CSHOH[IOI~JJJ~bOB_CNHOH_IKI~JNJzbOBoCEHOHoICI~J^JrbPBlByFXFtG@J@J\JhKiLELQbPB\CTFXFdGXJ@JLK@KiKuLibPB`COFXFhGTJ@JPJ|KiKyLebPBpCFFXFxGLJ@J`JtKiLIL]bPBlByHQHmHyMFbPB\CTHQH]IQMFMRbPB`COHQHaIMMFMVbPBpCFHQHqIEMFbQBmBzFYFuGAJAJ]JiMIMebQB]CUFYFeGYJAJMKAMIMUbQBaCPFYFiGUJAJQJ}MIMYbQBqCGFYFyGMJAJaJuMIbQBmBzHPHlHxKfLBLNbQB]CUHPH\IPKfKrLfbQBaCPHPH`ILKfKvLbbQBqCGHPHpIDKfLFLZdVDrD~FVFrF~I~JZJfKfLBLNMFMbdVDbEVFVFbGVI~JJJ~KfKrLfMFMRdVDfERFVFfGRI~JNJzKfKvLbMFMVdVDvEJFVFvGJI~J^JrKfLFLZMFMfdVDrD~HNHjHvdVDbEVHNHZINdVDfERHNH^IJdVDvEJHNHnIBdWDsE?FWFsG?J?J[JgdWDcEWFWFcGWJ?JKK?dWDgESFWFgGSJ?JOJ{dWDwEKFWFwGKJ?J_JsdWDsE?HOHkHwKiLELQMIMeMqdWDcEWHOH[IOKiKuLiMIMUdWDgESHOH_IKKiKyLeMIMYdWDwEKHOHoICKiLIL]MIMidXDtE@FYFuGAKgLCLOdXDdEXFYFeGYKgKsLgdXDhETFYFiGUKgKwLcdXDxELFYFyGMKgLGL[dXDtE@HPHlHxJ@J\JhMHMdMpdXDdEXHPH\IPJ@JLK@MHMTdXDhETHPH`ILJ@JPJ|MHMXdXDxELHPHpIDJ@J`JtMHMhM|dYDuEAFXFtG@MGMcModYDeEYFXFdGXMGMSdYDiEUFXFhGTMGMWNCdYDyEMFXFxGLMGMgM{dYDuEAHQHmHyJAJ]JiKhLDLPdYDeEYHQH]IQJAJMKAKhKtLhdYDiEUHQHaIMJAJQJ}KhKxLddYDyEMHQHqIEJAJaJuKhLHL\_a?{@wL~M?M@MAMNMOMPMQMzM{M|M}_k?{ABMBMCMDMEMNMOMPMQNBNCNDNE_u?{AMMJMKMLMMMNMOMPMQNJNKNLNM_a@aAHL~M?M@MAMjMkMlMmNFNGNHNI_a@V@}L~M?M@MAMbMcMdMeM~N?N@NA_k@KAHMBMCMDMEMZM[M\M]NFNGNHNI_u@K@}MJMKMLMMMZM[M\M]M~N?N@NA_k@V@rMBMCMDMEMbMcMdMeMvMwMxMy_u@a@rMJMKMLMMMjMkMlMmMvMwMxMy_a@F@lL~M?M@MAMVMWMXMYMrMsMtMu_k@\@lMBMCMDMEMfMgMhMiMrMsMtMu_u@Q@lMJMKMLMMM^M_M`MaMrMsMtMu__?y@u__@_AFNZ__@T@{NZN[__@D@jNZN[N\_`?z@v_`@`AG_`@U@|_`@E@k_a?{@w_a@aAH_a@V@}_a@F@lbBBVCDFJF^GJNZbBBrCRFJFzGVNZbBBjCIFJFrGNNZbBB^B{FJFfGBNZbBBVCDHBHVIBIsJGJsK[KoL[M?MOM{bBBrCRHBHrINIsJcK?K[LKLgM?MkNGbBBjCIHBHjIFIsJ[JwK[LCL_M?McN?bBB^B{HBH^HzIsJOJkK[KwLSM?MWMsbCBWCEFKF_GKK\KpL\M@MPM|N]NibCBsCSFKF{GWK\LLLhM@MlNHN]bCBkCJFKFsGOK\LDL`M@MdN@N]bCB_B|FKFgGCK\KxLTM@MXMtN]bCBWCEHCHWICIrJFJrbCBsCSHCHsIOIrJbJ~bCBkCJHCHkIGIrJZJvbCB_B|HCH_H{IrJNJjbDBXCFFLF`GLItJHJtK]KqL]bDBtCTFLF|GXItJdK@K]LMLibDBlCKFLFtGPItJ\JxK]LELabDB`B}FLFhGDItJPJlK]KyLUbDBXCFHEHYIEL~MNMzN\NhbDBtCTHEHuIQL~MjNFN\bDBlCKHEHmIIL~MbM~N\bDB`B}HEHaH}L~MVMrN\NpbEBYCGFMFaGMIuJIJuMAMQM}bEBuCUFMF}GYIuJeKAMAMmNIbEBmCLFMFuGQIuJ]JyMAMeNAbEBaB~FMFiGEIuJQJmMAMYMubEBYCGHDHXIDKZKnLZN[NgbEBuCUHDHtIPKZLJLfN[bEBmCLHDHlIHKZLBL^N[N{bEBaB~HDH`H|KZKvLRN[NodJD^EJFJF^GJIrJFJrKZKnLZL~MNMzdJDzEVFJFzGVIrJbJ~KZLJLfL~MjNFdJDrENFJFrGNIrJZJvKZLBL^L~MbM~dJDfEBFJFfGBIrJNJjKZKvLRL~MVMrdJD^EJHBHVIBN]NidJDzEVHBHrINN]OEdJDrENHBHjIFN]N}dJDfEBHBH^HzN]NqdKD_EKFKF_GKIsJGJsdKD{EWFKF{GWIsJcK?dKDsEOFKFsGOIsJ[JwdKDgECFKFgGCIsJOJkdKD_EKHCHWICK]KqL]MAMQM}NZNfdKD{EWHCHsIOK]LMLiMAMmNINZOBdKDsEOHCHkIGK]LELaMAMeNANZNzdKDgECHCH_H{K]KyLUMAMYMuNZNnOJdLD`ELFMFaGMK[KoL[N\NhOTdLD|EXFMF}GYK[LKLgN\ODdLDtEPFMFuGQK[LCL_N\N|dLDhEDFMFiGEK[KwLSN\NpOLdLD`ELHDHXIDItJHJtM@MPM|dLD|EXHDHtIPItJdK@M@MlNHdLDtEPHDHlIHItJ\JxM@MdN@dLDhEDHDH`H|ItJPJlM@MXMtdMDaEMFLF`GLM?MOM{N[NgOSdMD}EYFLF|GXM?MkNGN[OCdMDuEQFLFtGPM?McN?N[N{OWdMDiEEFLFhGDM?MWMsN[NoOKdMDaEMHEHYIEIuJIJuK\KpL\dMD}EYHEHuIQIuJeKAK\LLLhdMDuEQHEHmIIIuJ]JyK\LDL`dMDiEEHEHaH}IuJQJmK\KxLT_i?yA@N^N_N`NaNfNgNhNiOZO[O\O]_s?yAKNbNcNdNeNfNgNhNiObOcOdOe_i@IAFN^N_N`NaNrNsNtNuO^O_O`Oa_s@I@{NbNcNdNeNrNsNtNuOVOWOXOY_i@T@pN^N_N`NaNzN{N|N}ONOOOPOQ_s@_@pNbNcNdNeOBOCODOEONOOOPOQ_i@Z@jN^N_N`NaN~O?O@OAOJOKOLOM_s@O@jNbNcNdNeNvNwNxNyOJOKOLOM_t?zAL_t@J@|_t@`@q_t@P@k_u?{AM_u@K@}Or_u@a@rOrOs_u@Q@lOrOsOtbRBVCVFZF^GZNbNfObOrbRBbCIFZFjGNNbNrOVOrbRBrC@FZFzGFNbOBONOrbRBfB{FZFnGBNbNvOJOrbRBVCVHRHVIRJCJGKCKkKoLkMKMONKbRBbCIHRHbIFJCJSJwKkK{L_MKM[N?bRBrC@HRHrH~JCJcJoKkLKLWMKMkMwbRBfB{HRHfHzJCJWJkKkL?LSMKM_MsbSBWCWF[F_G[KlKpLlMLMPNLNeNiOebSBcCJF[FkGOKlK|L`MLM\N@NeNuOYbSBsCAF[F{GGKlLLLXMLMlMxNeOEOQbSBgB|F[FoGCKlL@LTMLM`MtNeNyOMbSBWCWHSHWISJBJFKBOsOwbSBcCJHSHcIGJBJRJvOsbSBsCAHSHsI?JBJbJnOsbSBgB|HSHgH{JBJVJjOsbTBXCXF\F`G\JDJHKDKmKqLmOuOybTBdCKF\FlGPJDJTJxKmK}LaOuPEbTBtCBF\F|GHJDJdJpKmLMLYOubTBhB}F\FpGDJDJXJlKmLALUOubTBXCXHUHYIUMJMNNJNdNhOdbTBdCKHUHeIIMJMZM~NdNtOXbTBtCBHUHuIAMJMjMvNdODOPbTBhB}HUHiH}MJM^MrNdNxOLbUBYCYF]FaG]JEJIKEMMMQNMbUBeCLF]FmGQJEJUJyMMM]NAbUBuCCF]F}GIJEJeJqMMMmMybUBiB~F]FqGEJEJYJmMMMaMubUBYCYHTHXITKjKnLjNcNgOcOtOxbUBeCLHTHdIHKjKzL^NcNsOWOtPDbUBuCCHTHtI@KjLJLVNcOCOOOtbUBiB~HTHhH|KjK~LRNcNwOKOtPHdZD^EZFZF^GZJBJFKBKjKnLjMJMNNJdZDjENFZFjGNJBJRJvKjKzL^MJMZM~dZDzEFFZFzGFJBJbJnKjLJLVMJMjMvdZDnEBFZFnGBJBJVJjKjK~LRMJM^MrdZD^EZHRHVIRNeNiOeOuOydZDjENHRHbIFNeNuOYOuPEdZDzEFHRHrH~NeOEOQOuPUdZDnEBHRHfHzNeNyOMOuPId[D_E[F[F_G[JCJGKCOtOxd[DkEOF[FkGOJCJSJwOtPDd[D{EGF[F{GGJCJcJoOtPTd[DoECF[FoGCJCJWJkOtPHP\d[D_E[HSHWISKmKqLmMMMQNMNbNfObd[DkEOHSHcIGKmK}LaMMM]NANbNrOVd[D{EGHSHsI?KmLMLYMMMmMyNbOBONd[DoECHSHgH{KmLALUMMMaMuNbNvOJd\D`E\F]FaG]KkKoLkNdNhOdOsOwd\DlEPF]FmGQKkK{L_NdNtOXOsPCd\D|EHF]F}GIKkLKLWNdODOPOsPSP_d\DpEDF]FqGEKkL?LSNdNxOLOsPGP[d\D`E\HTHXITJDJHKDMLMPNLd\DlEPHTHdIHJDJTJxMLM\N@d\D|EHHTHtI@JDJdJpMLMlMxd\DpEDHTHhH|JDJXJlMLM`Mtd]DaE]F\F`G\MKMONKNcNgOcd]DmEQF\FlGPMKM[N?NcNsOWd]D}EIF\F|GHMKMkMwNcOCOOd]DqEEF\FpGDMKM_MsNcNwOKd]DaE]HUHYIUJEJIKEKlKpLlOrOvd]DmEQHUHeIIJEJUJyKlK|L`OrPBPfd]D}EIHUHuIAJEJeJqKlLLLXOrPRP^d]DqEEHUHiH}JEJYJmKlL@LTOrPFPZ_k?{ABOnOoOpOqOvOwOxOyPjPkPlPm_k@KAHOnOoOpOqPBPCPDPEPnPoPpPq_k@V@rOnOoOpOqPJPKPLPMP^P_P`Pa_k@\@lOnOoOpOqPNPOPPPQPZP[P\P]_j?zAA_j@JAGPz_j@U@qPzP{_j@[@kPzP{P|bJBVCMFRF^GRN^NfOZOnOvPjPzbJBbCRFRFjGVN^NrO^OnPBPnPzbJBjC@FRFrGFN^NzONOnPJP^PzbJBnB{FRFvGBN^N~OJOnPNPZPzbJBVCMHJHVIJI{JGJ{KcKoLcMCMONCbJBbCRHJHbINI{JSK?KcK{LgMCM[NGbJBjC@HJHjH~I{J[JoKcLCLWMCMcMwbJBnB{HJHnHzI{J_JkKcLGLSMCMgMsbKBWCNFSF_GSKdKpLdMDMPNDNaNiO]bKBcCSFSFkGWKdK|LhMDM\NHNaNuOabKBkCAFSFsGGKdLDLXMDMdMxNaN}OQbKBoB|FSFwGCKdLHLTMDMhMtNaOAOMbKBWCNHKHWIKIzJFJzOoOwPkP{Q?bKBcCSHKHcIOIzJRJ~OoPCPoP{bKBkCAHKHkI?IzJZJnOoPKP_P{bKBoB|HKHoH{IzJ^JjOoPOP[P{bLBXCOFTF`GTI|JHJ|KeKqLeOqOyPmbLBdCTFTFlGXI|JTK@KeK}LiOqPEPqbLBlCBFTFtGHI|J\JpKeLELYOqPMPabLBpB}FTFxGDI|J`JlKeLILUOqPQP]bLBXCOHMHYIMMBMNNBN`NhO\P|Q@bLBdCTHMHeIQMBMZNFN`NtO`P|QLbLBlCBHMHmIAMBMbMvN`N|OPP|bLBpB}HMHqH}MBMfMrN`O@OLP|bMBYCPFUFaGUI}JIJ}MEMQNEP}QAbMBeCUFUFmGYI}JUKAMEM]NIP}QMbMBmCCFUFuGII}J]JqMEMeMyP}QUbMBqB~FUFyGEI}JaJmMEMiMuP}bMBYCPHLHXILKbKnLbN_NgO[OpOxPlbMBeCUHLHdIPKbKzLfN_NsO_OpPDPpbMBmCCHLHlI@KbLBLVN_N{OOOpPLP`bMBqB~HLHpH|KbLFLRN_O?OKOpPPP\dRD^ERFRF^GRIzJFJzKbKnLbMBMNNBdRDjEVFRFjGVIzJRJ~KbKzLfMBMZNFdRDrEFFRFrGFIzJZJnKbLBLVMBMbMvdRDvEBFRFvGBIzJ^JjKbLFLRMBMfMrdRD^ERHJHVIJNaNiO]OqOyPmP}QAdRDjEVHJHbINNaNuOaOqPEPqP}QMdRDrEFHJHjH~NaN}OQOqPMPaP}QUdRDvEBHJHnHzNaOAOMOqPQP]P}QYdSD_ESFSF_GSI{JGJ{OpOxPlP|Q@dSDkEWFSFkGWI{JSK?OpPDPpP|QLdSDsEGFSFsGGI{J[JoOpPLP`P|QTdSDwECFSFwGCI{J_JkOpPPP\P|QXQddSD_ESHKHWIKKeKqLeMEMQNEN^NfOZdSDkEWHKHcIOKeK}LiMEM]NIN^NrO^dSDsEGHKHkI?KeLELYMEMeMyN^NzONdSDwECHKHoH{KeLILUMEMiMuN^N~OJdTD`ETFUFaGUKcKoLcN`NhO\OoOwPkdTDlEXFUFmGYKcK{LgN`NtO`OoPCPodTDtEHFUFuGIKcLCLWN`N|OPOoPKP_dTDxEDFUFyGEKcLGLSN`O@OLOoPOP[dTD`ETHLHXILI|JHJ|MDMPNDPzP~dTDlEXHLHdIPI|JTK@MDM\NHPzQJdTDtEHHLHlI@I|J\JpMDMdMxPzQRQfdTDxEDHLHpH|I|J`JlMDMhMtPzQVQbdUDaEUFTF`GTMCMONCN_NgO[P{Q?QsdUDmEYFTFlGXMCM[NGN_NsO_P{QKdUDuEIFTFtGHMCMcMwN_N{OOP{QSQgdUDyEEFTFxGDMCMgMsN_O?OKP{QWQcdUDaEUHMHYIMI}JIJ}KdKpLdOnOvPjdUDmEYHMHeIQI}JUKAKdK|LhOnPBPndUDuEIHMHmIAI}J]JqKdLDLXOnPJP^dUDyEEHMHqH}I}JaJmKdLHLTOnPNPZ~~~~~~") del1215nx = del1215.networkx_graph() # List of graphs to process graphs = [('del1215 ', del1215 )] def count_k_cycles(G, k): count = 0 visited = set() def dfs(path, start, depth): nonlocal count current = path[-1] # Early exit if we?re going too deep if depth == k: if start in G.neighbors(current): # Normalize to avoid duplicates cycle = tuple(sorted(path)) if cycle not in visited: visited.add(cycle) count += 1 return for neighbor in G.neighbors(current): if neighbor not in path and neighbor >= start: dfs(path + [neighbor], start, depth + 1) for v in G.vertices(): dfs([v], v, 1) return count # each cycle counted twice (once forward, once reverse) def algebraic_connectivity(G): """ Compute the algebraic connectivity (Fiedler value) of a graph G. INPUT: - G: a SageMath Graph OUTPUT: - The second-smallest eigenvalue of the Laplacian matrix of G """ L = G.laplacian_matrix() eigenvalues = L.eigenvalues() eigenvalues.sort() if len(eigenvalues) < 2: return 0 # Trivial case: empty or isolated vertex graph return eigenvalues[1] def domination_number(G): """ Compute the domination number of a graph G using MILP. INPUT: - G: a SageMath Graph OUTPUT: - The domination number (integer) """ p = MixedIntegerLinearProgram(maximization=False) x = p.new_variable(binary=True) # Objective: minimize the number of chosen vertices p.set_objective(sum(x[v] for v in G.vertices())) # Constraint: each vertex is dominated for v in G.vertices(): p.add_constraint(x[v] + sum(x[u] for u in G.neighbors(v)) >= 1) return p.solve() # Print properties for each graph in the list print("\n Main properties of the graph\n") for label, graph in graphs: print(f"{label} | Ord.: {graph.order()} / Size: {graph.size()} " f" / Diam.: {graph.diameter()} / Avg.dist: {graph.average_distance().n(digits=6)} \n" f" / 15-reg.? {graph.is_regular(k=15)} / Degree histogram: {nx.degree_histogram(del1215nx)} / Girth: {graph.girth()}\n ") #f" / Alg.conn. {algebraic_connectivity(graph).n(digits=6)})# / Domin. number: {domination_number(graph)} ") print("\n Symmetry properties of the graph\n") for label, graph in graphs: print(f"{label} vtx.trans. ? {graph.is_vertex_transitive()} -- edge.trans. ? {graph.is_edge_transitive()}" ) print(f"{label} | Aut.group.ord.: {graph.automorphism_group().order()} " ) # Compute the distance distribution from a given vertex v in graph G # Returns a list where the i-th element is the number of vertices at distance i from v def distance_distribution(G, v): from collections import Counter distances = G.shortest_path_lengths(v) distribution = Counter(distances.values()) result = [distribution[d] for d in sorted(distribution)] return result print("\n") for label, graph in graphs: print(f"{label} distance distrib from vtx. 94: {distance_distribution(graph, 94)}") print(f"{label} distance distrib from vtx. 95: {distance_distribution(graph, 95)}") print(f"{label} distance distrib from vtx. 96: {distance_distribution(graph, 96)}") # Counting k-cycles for each graph print("\nNumber of k-cycles for k=3 up to 4") for label, graph in graphs: print(f"{label} ", " ".join(str(count_k_cycles(graph, k)) for k in range(3, 5))) print("\n") #