

# Graph theory

## M1 - FIB

Contents:

1. Graphs: basic concepts
2. Walks, connectivity and distance
3. Eulerian and Hamiltonian graphs
4. Trees

Anna de Mier

Montserrat Maureso

Departament de Matemàtiques

Translation: Oriol Caño, Anna de Mier

February 2023

# Chapter 1

## Graphs: basic concepts

1. First definitions
2. Degrees
3. Graph isomorphism
4. Types of graphs
5. Subgraphs

# 1. First definitions

A **graph**  $G$  is a pair  $(V, E)$  where  $V$  is a non-empty finite set and  $E$  is a set of unordered pairs of different elements of  $V$ , that is,  $E \subseteq \{\{u, v\} : u, v \in V\}$

We call

the elements of  $V$ , **vertices**

the elements of  $E$ , **edges**

the number of vertices,  $|V|$ , the **order** of  $G$

the number of edges,  $|E|$ , the **size** of  $G$

Let  $u, v \in V$  be vertices and  $a, e \in E$  be edges of  $G$ . We will say that:

$u$  and  $v$  are **adjacent** or **neighbours** if  $\{u, v\} \in E$ , for short  $u \sim v$  or  $uv \in E$

$u$  and  $e$  are **incident** if  $e = \{u, w\}$ , for some  $w \in V$        $e$  and  $a$  are **incident** if they have a vertex in common

$u$  has degree  $d(u)$  if the number of vertices adjacent to  $u$  is  $d(u)$ , that is,

$$d(u) = \#\{v \in V | u \sim v\}$$

Observation: If  $n = |V|$  and  $m = |E|$ , then

$$0 \leq m \leq \frac{n(n-1)}{2} \text{ and } 0 \leq d(v) \leq n-1 \text{ for all } v \in V$$

## Drawing of a graph $G = (V, E)$

The vertices are represented by a dot and each edge by a curve joining the two dots corresponding to the vertices incident to that edge

## Adjacency list (or adjacency table) of a graph $G = (V, E)$

Let  $v_1, v_2, \dots, v_n$  be the vertices of  $G$ . The **adjacency list of  $G$**  is a list of length  $n$  where position  $i$  contains the set of vertices adjacent to  $v_i$ , for all  $i \in [n]$

Let  $G = (V, E)$  be a graph of order  $n$  and size  $m$  with  $V = \{v_1, v_2, \dots, v_n\}$  and  $E = \{a_1, a_2, \dots, a_m\}$

The **adjacency matrix of  $G$**  is the matrix  $M_A = M_A(G)$  of type  $n \times n$ , such that the entry  $m_{ij}$  in the  $i$ -th row and  $j$ -th column is

$$m_{ij} = \begin{cases} 1, & \text{if } v_i \sim v_j \\ 0, & \text{otherwise} \end{cases}$$

- $M_A$  is binary, with zeros in the diagonal, and symmetric
- The number of ones in the  $i$ -th row is the degree of  $v_i$ ;
- It is not unique, it depends on the ordering chosen for the set of vertices

Variations on the definition of graph:

- ▷ **Multigraph**: a graph that admits multiple edges, that is, there can be more than one edge joining two vertices
- ▷ **Pseudograph**: a graph that admits multiple edges and loops (edges that join a vertex with itself)
- ▷ **Directed graph**: a graph where the edges are oriented

## 2. Degrees

Let  $G = (V, E)$  be a graph of order  $n$  and let  $v \in V$  be a vertex. Define

- the **minimum degree of  $G$** ,  $\delta(G)$ : the minimum of the degrees
- the **maximum degree of  $G$** ,  $\Delta(G)$ : the maximum of the degrees
- the **degree sequence of  $G$** : the sequence of the degrees in decreasing order
- a **regular graph**: a graph such that  $\delta(G) = \Delta(G)$ , i.e., all the vertices have the same degree

Observation:

- All graphs of order  $\geq 2$  have at least two vertices with the same degree

**Handshaking lemma:**  $2|E| = \sum_{v \in V} d(v)$

**Corollary** All graphs have an even number of vertices with odd degree

A decreasing sequence of integers is **graphical** if there is some graph that has it as a degree sequence

### 3. Graph isomorphism

Let  $G = (V, E)$  and  $G' = (V', E')$  be two graphs. We will say that

- ▷  $G$  and  $G'$  are **equal**,  $G = G'$ , if  $V = V'$  and  $E = E'$
- ▷  $G$  and  $G'$  are **isomorphic**,  $G \cong G'$ , if there is a bijective map  $f : V \rightarrow V'$ , such that, for all  $u, v \in V$ ,

$$u \sim v \Leftrightarrow f(u) \sim f(v).$$

The map  $f$  is called an **isomorphism** from  $G$  to  $G'$

#### Remarks:

- A vertex and its image by an isomorphism have the same degree
- Two isomorphic graphs have the same size and order. The converse is false
- Two isomorphic graphs have the same degree sequence. The converse is false
- *Being isomorphic* is an equivalence relation

## 4. Types of graphs

Let  $n$  be a positive integer and  $V = \{x_1, x_2, \dots, x_n\}$

Null graph of order  $n$ ,  $N_n$ : is a graph with order  $n$  and size 0

Trivial graph:  $N_1$

Complete graph of order  $n$ ,  $K_n$ : is a graph of order  $n$  with all possible edges

- Size of  $K_n = \frac{n(n-1)}{2}$

Path of order  $n$ ,  $P_n = (V, E)$ : is a graph of order  $n$  and size  $n - 1$  with set of edges  $E = \{x_1x_2, x_2x_3, \dots, x_{n-1}x_n\}$

- $\delta(P_n) = 1$  and  $\Delta(P_n) = 2$

Cycle of order  $n$ ,  $n \geq 3$ ,  $C_n = (V, E)$ , with  $n \geq 3$ : is a graph of order  $n$  and size  $n$  with set of edges  $E = \{x_1x_2, x_2x_3, \dots, x_{n-1}x_n, x_nx_1\}$

- $\delta(C_n) = \Delta(C_n) = 2$

Wheel of order  $n$ ,  $n \geq 4$ ,  $W_n = (V, E)$ : is a graph of order  $n$  and size  $2n - 2$  such that  $E = \{x_1x_2, x_2x_3, \dots, x_{n-1}x_1\} \cup \{x_nx_1, x_nx_2, \dots, x_nx_{n-1}\}$

Let  $r$  and  $s$  be positive integers

An  **$r$ -regular graph** is a regular graph where  $r$  is the degree of the vertices

- The complete graph  $K_n$  is an  $(n - 1)$ -regular graph
- The cycle graph  $C_n$  is a 2-regular graph
- If  $G = (V, E)$  is an  $r$ -regular graph, then  $2|E| = r|V|$

A **bipartite graph** is a graph  $G = (V, E)$  such that there are two non-empty subsets  $V_1$  and  $V_2$  of  $V$  such that  $V = V_1 \cup V_2$  and  $V_1 \cap V_2 = \emptyset$ , and for each edge  $uv \in E$  we have that  $u \in V_1$  and  $v \in V_2$ , or vice versa.

We call  $V_1$  and  $V_2$  the **stable parts** of the graph

$$-\sum_{v \in V_1} g(v) = \sum_{v \in V_2} g(v) = |E|$$

The **complete bipartite graph**  $K_{r,s} = (V, E)$  is a bipartite graph with two stable parts  $V_1$  and  $V_2$  such that  $|V_1| = r$  and  $|V_2| = s$  and all the vertices of  $V_1$  are adjacent to all the vertices of  $V_2$ . I.e.,  $E = \{uv | u \in V_1, v \in V_2\}$

- The order of  $K_{r,s}$  is  $r + s$  and the size is  $rs$
- The graph  $K_{1,s}$  is called **star graph**

## 5. Subgraphs

Let  $G = (V, E)$  be a graph

Subgraph of  $G$ ,  $G' = (V', E')$ : a graph with  $V' \subseteq V$  and  $E' \subseteq E$

Spanning subgraph of  $G$ ,  $G' = (V', E')$ : a subgraph such that  $V' = V$

Subgraph induced by  $S \subseteq V$ : the graph  $G[S] = (S, E')$  such that  $E' = \{uv \in E : u, v \in S\}$

## 5.1. Graphs derived from a graph

Let  $G = (V, E)$  be a graph of order  $n$  and size  $m$

**Complement of  $G$ ,  $G^c = (V^c, E^c)$ :** is the graph with set of vertices  $V^c = V$  and set of edges  $E^c = \{uv \mid u, v \in V \text{ and } uv \notin E\}$

- The order of  $G^c$  equals the order of  $G$
- The size of  $G^c$  is  $\frac{n(n-1)}{2} - |E|$
- $(G^c)^c = G$
- Let  $H$  be a graph. Then  $G \cong H \Leftrightarrow G^c \cong H^c$

The graph  $G$  is **self-complementary** if  $G \cong G^c$

For  $S \subset V$ , the graph  $G - S$  obtained by **deleting the vertices from  $S$**  is the graph with set of vertices  $V \setminus S$  and whose edges are those that are not incident to any of the vertices of  $S$ . In the case that  $S = \{v\}$ , we denote it by  $G - v$

- The order of  $(G - u)$  is  $n - 1$ . The size of  $(G - u)$  is  $m - d(u)$

For  $S \subset E$ , the graph  $G - S$  obtained by **deleting the edges from  $S$**  is the graph with set of vertices  $V$  and set of edges  $E \setminus S$ . In the case that  $S = \{e\}$ , we denote it by  $G - e$

- The order and size of  $G - e$  are  $n$  and  $m - 1$ , respectively

The graph  $G + e$  obtained by **adding an edge  $e \in E$**  is the graph with set of vertices  $V$  and set of edges  $E' = E \cup \{e\}$

- The order of  $G + e$  is  $n$  and its size is  $m + 1$

## 5.2. Operations with graphs

Let  $G = (V, E)$  and  $G' = (V', E')$  be two graphs

**Union of  $G$  and  $G'$ ,  $G \cup G'$ :** graph with set of vertices  $V \cup V'$  and set of edges  $E \cup E'$

- If  $V \cap V' = \emptyset$ , the order of  $G \cup G'$  is  $|V| + |V'|$  and the size is  $|E| + |E'|$

**Product of  $G$  and  $G'$ ,  $G \times G'$ :** graph with set of vertices  $V \times V'$  and adjacencies given by

$$(u, u') \sim (v, v') \Leftrightarrow (uv \in E \text{ and } u' = v') \text{ or } (u = v \text{ and } u'v' \in E')$$

- The order of  $G \times G'$  is  $|V| |V'|$  and its size is  $|V| |E'| + |V'| |E|$

# Chapter 2

## Walks, connectivity and distance

1. Walks
2. Connected graphs
3. Cut vertices and bridges
4. Distance
5. Characterization of bipartite graphs

## 1. Walks

Let  $G = (V, E)$  be a graph, and let  $u, v \in V$

A **walk** from  $u$  to  $v$ , or a  $u$ - $v$  **walk**, of **length**  $k$  is a sequence of vertices and edges

$$\mathcal{R} : u_0 a_1 u_1 a_2 u_2 \dots u_{k-1} a_k u_k$$

such that  $u_0 = u$ ,  $u_k = v$  and  $a_i = u_{i-1} u_i \in E$ , for all  $i \in [k]$ . In general, we just write  $u_0 u_1 u_2 \dots u_{k-1} u_k$

We say that the walk  $\mathcal{R}$  **visits the vertices**  $u_i$  and **visits the edges**  $a_i = u_{i-1} u_i$

If  $u = v$  we say that it is a **closed walk**, and if  $u \neq v$  we say that it is an **open walk**

A vertex is considered to be a **walk of length zero**

Kinds of walks: a  $u$ - $v$  walk is a

- path if all vertices are different
- cycle if it is a closed walk of length  $\geq 3$  and all vertices are different

A vertex is considered to be a path of length zero

Remark A cycle visits two vertices  $u$  and  $v$  if, and only if, there are two  $u$ - $v$  paths without any common vertex except  $u$  and  $v$

A graph without cycles is called an acyclic graph

### Proposition 1

Let  $G = (V, E)$  be a graph and  $u, v$  different vertices. If there is in  $G$  a  $u$ - $v$  walk of length  $k$ , then there is a  $u$ - $v$  path of length  $\leq k$

### Proposition 2

Let  $G = (V, E)$  be a graph and  $u, v$  different vertices. If  $G$  has two different  $u$ - $v$  paths, then  $G$  has a cycle.

## 2. Connected graphs

We say that a graph  $G = (G, E)$  is **connected** if for every pair of vertices  $u$  and  $v$  there is a  $u$ - $v$  path. Otherwise we say that the graph is **disconnected**

Remark If  $G = (V, E)$  is a connected graph of order greater than 1, then  $d(v) \geq 1$ , for all  $v \in V$

We define the following relation **R** in  $V$ : for all  $x, y \in V$

$$xRy \Leftrightarrow \text{there is an } x - y \text{ path in } G$$

**R** is an **equivalence relation**:

- Reflexive,  $xRx$ : there is an  $x$ - $x$  path of length zero
- Symmetric, if  $xRy$ , then  $yRx$ : an  $x$ - $y$  path traversed in opposite direction is a  $y$ - $x$  path
- Transitive, if  $xRy$  and  $yRz$ , then  $xRz$ : from an  $x$ - $y$  path  $xx_1 \dots x_n y$  and a  $y$ - $z$  path  $yy_1 \dots y_m z$ , we build an  $x$ - $z$  walk  $xx_1 \dots x_n y y_1 \dots y_m z$ , thus, there is an  $x$ - $z$  path

If  $G = (V, E)$  is a disconnected graph there is a partition of  $V$  in  $k > 1$  subsets  $V_1, V_2, \dots, V_k$ , which are the equivalence classes of the relation  $\mathbf{R}$ . Therefore, for all  $1 \leq i, j \leq k$ ,

1.  $V_i \neq \emptyset$ ,  $V_i \cap V_j = \emptyset$  for all  $i \neq j$ , and  $V = \bigcup_{i=1}^k V_i$
2.  $G[V_i]$  (the subgraph induced by  $V_i$ ) is connected
3. There is no path between vertices of  $G[V_i]$  and vertices from  $G[V_j]$ , with  $i \neq j$
4.  $G = \bigcup_{i=1}^k G[V_i]$

The subgraphs  $G[V_1], G[V_2], \dots, G[V_k]$  are called the **connected components** of  $G$

### Remark

Let  $G = G_1 \cup G_2 \cup \dots \cup G_k$ , where  $G_i$  are the connected components of  $G$ . Then

$$\begin{aligned}\text{order } G &= \text{order } G_1 + \dots + \text{order } G_k \\ \text{size } G &= \text{size } G_1 + \dots + \text{size } G_k\end{aligned}$$

### **Proposition 3**

A graph is 2-regular if, and only if, its connected components are cycles.

### **Proposition 4**

Let  $G = (V, E)$  be a connected graph and let  $e = xy \in E$  and  $u \in V$ . Then

1. The graph  $G - e$  has at most 2 connected components; if it has 2, vertex  $x$  belongs to one of them and vertex  $y$  to the other
2. The graph  $G - u$  has at most  $d(u)$  connected components

### **Proposition 5**

Every connected graph of order  $n$  has at least  $n - 1$  edges

## 2.1 Algorithm DFS: (Depth-first search)

```
DFS list(graph G, int v)
/* Pre: a graph G and a vertex v (assume that the vertices are integers)
/* Post: the list of vertices of G that belong to the same connected component as v
{
    Stack S;
    S.push(v);
    List W;
    W.add(v);
    int x;
    while (not S.is_empty) {
        x=S.top;
        if(''there is y adjacent to x that does not belong to W'') {
            S.push(y);
            W.add(y);
        }
        else {
            S.pop;
        }
    }
    return W;
}
```

**Theorem 6** Let  $G = (V, E)$  be a graph and  $v$  a vertex of  $G$ . The subgraph  $G[W]$  induced by the vertices of  $G$  visited by the algorithm DFS is the connected component of  $G$  that contains  $v$

### 3. Cut vertices and bridges

Let  $G = (V, E)$  be a graph and let  $v \in V$  and  $e \in E$ . We say that

- $v$  is a **cut vertex** or **articulation point** if  $G - v$  has more connected components than  $G$
- $e$  is a **bridge** if  $G - e$  has more connected components than  $G$

#### Remarks

1. If  $G$  is connected and  $u$  is a cut vertex, then  $G - u$  is a disconnected graph with at most  $d(u)$  connected components
2. The vertices of degree 1 are not cut vertices
3. If  $G$  is connected and  $e$  is a bridge, then  $G - e$  is a disconnected graph with exactly 2 connected components

### **Theorem 7** Characterization of cut vertices

Let  $G = (V, E)$  be a connected graph. A vertex  $u$  of  $G$  is a cut vertex if, and only if, there exists a pair of vertices  $x, y$  different from  $u$  such that every  $x$ - $y$  path visits  $u$

### **Theorem 8** Characterization of bridges

Let  $G = (V, E)$  be a connected graph and  $e = uv$  an edge of  $G$ . The following are equivalent:

- (a)  $e$  is a bridge
- (b) there exists a pair of vertices  $x, y$  such that every  $x$ - $y$  path visits  $e$
- (c) no cycle contains  $e$

### Remarks

1. A graph may have cut vertices and no bridges
2. Let  $e = uv$  be a bridge. If  $d(u) = 1$ ,  $u$  is not a cut vertex; if  $d(u) \geq 2$ , the vertex  $u$  is a cut vertex
3. The only connected graph with a bridge and without cut vertices is  $K_2$

## 4. Distance

Let  $G = (V, E)$  be a graph and  $u, v$  vertices of  $G$

- If  $u, v$  are in the same connected component, we define the **distance between  $u$  and  $v$** ,  $d(u, v)$ , as the minimum value among the lengths of all  $u$ - $v$  paths. **Otherwise** we say that the distance is infinite
- The **eccentricity of vertex  $u$** ,  $e(u)$ , is the maximum distance between  $u$  and any other vertex of  $G$ , that is,  $e(u) = \max\{d(u, v) | v \in V\}$
- The **diameter of  $G$** ,  $D(G)$ , is the maximum of the distances between the vertices of  $G$ , or, equivalently, the maximum of the eccentricities; that is,  $D(G) = \max\{d(u, v) | u, v \in V\} = \max\{e(u) | u \in V\}$
- The **radius of  $G$** ,  $r(G)$ , is the minimum of the eccentricities of the vertices of  $G$ , that is,  $r(G) = \min\{d(u, v) | u, v \in V\} = \max\{e(u) | u \in V\}$
- The **central vertices of  $G$** , are the vertices whose eccentricities equal the radius, that is, the set  $\{u \in V : e(u) = r(G)\}$
- The **center of  $G$**  is the subgraph induced by the central vertices

## Remarks

1.  $xy \in E \Leftrightarrow d(x, y) = 1$
2.  $G$  is not connected  $\Leftrightarrow D(G) = \infty \Leftrightarrow r(G) = \infty \Leftrightarrow e(u) = \infty, \forall u \in V$
3. The following inequality holds  $r(G) \leq D(G) \leq 2r(G)$

In a (connected) graph  $G = (V, E)$ , the following hold for all vertices  $u, v, z$

1.  $d(u, v) \geq 0$ , and  $d(u, v) = 0$  if, and only if,  $u = v$
2.  $d(u, v) = d(v, u)$
3.  $d(u, v) + d(v, z) \geq d(u, z)$  (triangle inequality)

## 4.1 Algorithm BFS: (Breadth First Search)

```
vector BFS(graph G, int v)
/* Pre: a connected graph G of order n and a vertex v (assume that the vertices are integers)
/* Post: a vector D such that D[x]=d(v,x)
{
    Queue Q;
    Q.enqueue(v);
    List W;
    W.add(v);
    vector<int> D(n);
    D[v]=0;
    int x;
    while (not Q.is_empty) {
        x=Q.front;
        if(''there is y adjacent to x and y does not belong to W'') {
            Q.enqueue(y);
            W.add(y);
            D[y]=D[x]+1;
        }
        else {
            Q.advance;
        }
    }
    return D;
}
```

**Theorem 9** Let  $G = (V, E)$  be a graph and  $v \in V$ . The vector  $D$  given by the algorithm BFS stores the distance from vertex  $v$  to all other vertices in the graph

# **Chapter 3**

## **Eulerian and Hamiltonian graphs**

1. Eulerian graphs
2. Hamiltonian graphs

# 1. Eulerian graphs

A walk in a graph is called a **trail** if it is open and it does not repeat any edges, and it is called a **circuit** if it is closed, non-trivial, and does not repeat any edges.

Let  $G$  be a connected graph.

- An **Eulerian trail** is a trail that visits all the edges of  $G$
- An **Eulerian circuit** is a circuit that visits all the edges of  $G$
- An **Eulerian graph** is a graph that has an Eulerian circuit

## **Theorem** Characterization of Eulerian graphs

Let  $G$  be a connected, non-trivial graph. Then,

$G$  is Eulerian if, and only if, all its vertices have even degree

## **Corollary**

A connected graph has an Eulerian trail if, and only if, it has exactly two vertices of odd degree

In that case, the Eulerian trail starts at a vertex of odd degree and finishes at the other vertex of odd degree

## 2. Hamiltonian graphs

Let  $G$  be a connected graph.

- A **Hamiltonian path** is a path that visits all the vertices of  $G$
- A **Hamiltonian cycle** is a cycle that visits all the vertices of  $G$
- A **Hamiltonian graph** is a graph that has a Hamiltonian cycle

### Necessary conditions

Let  $G = (V, E)$  be a Hamiltonian graph of order  $n$ , then

- (1)  $d(v) \geq 2$ , for all  $v \in V$
- (2) if  $S \subset V$  and  $k = |S|$ , the graph  $G - S$  has at most  $k$  connected components

### Sufficient conditions

**Ore's Theorem** Let  $G = (V, E)$  be a graph of order  $n \geq 3$  such that for all different and non adjacent  $u, v \in V$  we have  $d(u) + d(v) \geq n$ . Then,  $G$  is a Hamiltonian graph

**Dirac's Theorem** Let  $G = (V, E)$  be a graph of order  $n \geq 3$  such that  $d(u) \geq n/2$ , for all  $u \in V$ . Then,  $G$  is Hamiltonian

# **Chapter 4**

## **Trees**

1. Trees and the characterization theorem
2. Spanning trees
3. Counting trees

# 1. Trees and the characterization theorem

- A **tree** is a connected acyclic graph
- A **forest** is an acyclic graph
- A **leaf** is a vertex of a tree or a forest that has degree 1

Observation: The connected components of a forest are trees

Remarks: Let  $T = (V, E)$  be a tree,  $e$  an edge and  $u$  a vertex of  $T$ . Then

1.  $T$  contains at least one leaf
2.  $e$  is a bridge
3.  $T - e$  is a forest with 2 connected components
4. if  $d(u) \geq 2$ , then  $u$  is a cut vertex
5.  $T - u$  is a forest with  $d(u)$  connected components
6. if  $u$  is a leaf, then  $T - u$  is a tree

## Proposition 1

All acyclic graphs of order  $n$  have size at most  $n - 1$ .

## Theorem 2 Characterization of trees

Let  $T = (V, E)$  be a graph of order  $n$  and size  $m$ . The following are equivalent

- (a)  $T$  is a tree
- (b)  $T$  is acyclic and  $m = n - 1$
- (c)  $T$  is connected and  $m = n - 1$
- (d)  $T$  is connected and all edges are bridges
- (e) for each pair of vertices  $u$  and  $v$  there is a unique  $u$ - $v$  path in  $T$
- (f)  $T$  is acyclic and the addition of an edge creates exactly one cycle

## Corollary 3

A forest  $G$  of order  $n$  with  $k$  connected components has size  $n - k$

## Corollary 4

If  $T$  is a tree of order  $n \geq 2$ ,  $T$  has at least two leaves

## 2. Spanning trees

A **spanning tree** of a subgraph  $G$  is a spanning subgraph of  $G$  that is a tree

### **Theorem 5**

A graph  $G = (V, E)$  is connected if, and only if,  $G$  has a spanning tree

## 2.1 DFS algorithm to obtain spanning trees

```
DFS tree(graph G, int v)
/* Pre: a graph G and a vertex v
/* Post: a spanning tree of the connected component of G to which v belongs
{
    Stack S;
    S.push(v);
    List W;
    W.add(v);
    List B;
    int x;
    while (not S.is_empty) {
        x=S.top;
        if(''exists y adjacent to x that does not belong to W'') {
            S.push(y);
            W.add(y);
            B.add(xy);
        }
        else {
            S.pop;
        }
    }
    return (W,B);
}
```

### Theorem 6

$T = (W, B)$  is a spanning tree of the connected component containing  $v$

## 2.2 BFS algorithm to obtain spanning trees

```
BFS tree(graph G, int v)
/* Pre: a connected graph G of order n and a vertex v
/* Post: a spanning tree of the connected component of G to which v belongs
{
    Queue Q;
    Q.enqueue(v);
    List W;
    W.add(v);
    List B;
    int x;
    while (not Q.is_empty) {
        x=Q.peek;
        if(''exists y adjacent to x that does not belong to W'') {
            Q.enqueue(y);
            W.add(y);
            B.add(xy);
        }
        else {
            Q.dequeue;
        }
    }
    return (W,B);
}
```

### Theorem 7

$T = (W, B)$  is a spanning tree of the connected component containing  $v$

### 3. Counting trees

#### Cayley's formula

The number of different spanning trees of the complete graph  $K_n$  is  $n^{n-2}$

The theorem is equivalent to saying that the number of different trees with set of vertices  $[n]$  is  $n^{n-2}$

The proof is based in the construction of a bijective map

$$Pr : \{T : T \text{ spanning tree of } K_n\} \longrightarrow [n]^{n-2},$$

The Prüfer's sequence of  $T$  is the image of  $T$  by the map  $Pr$ :

$$Pr(T) = (a_1, a_2, \dots, a_{n-2})$$

- Construction of the Prüfer's sequence of a tree  $T = ([n], E)$

## Recursive construction

```
vector seqPrufer(tree T, int n)
/* Pre: a tree T with set of vertices {1,2,...,n}
/* Post: a vector of length n-2 containing the Prüfer's sequence of T

{
    tree Taux=T;
    int k=0;
    int leaf;
    vector<int> seq(n)
    while(k < n-2) {
        leaf='leaf of Taux with the smallest label';
        seq[k]='vertex adjacent to leaf';
        Taux=Taux-leaf;
        k++;
    }
    return seq;
}
```

### Comments:

Let  $b_1, \dots, b_{n-2}$  be the vertices of  $T$  that at some point in the execution have been a leaf

- $T$  is a tree at each step of the algorithm
- the vertices  $b_1, \dots, b_{n-2}$  are pairwise different
- $T - \{b_1, \dots, b_{n-2}\} \simeq K_2$
- $n$  is one of the vertices of  $T - \{b_1, \dots, b_{n-2}\}$
- $x \in [n]$  appears in the Prüfer's sequence as many times as  $d(x) - 1$
- the vertices that do not appear in the Prüfer's sequence are leaves of  $T$

- Reconstruction of the tree  $T$  from a word  $(a_1, \dots, a_{n-2})$  in the alphabet  $[n]$ .  
I.e., the inverse map of  $Pr$

```

tree PruferTree(vector<int> seq, int n)
/* Pre: a vector with n-2 integers between 1 and n
/* Post: the tree that has seq as Prüfer's sequence

{
List A;
vector<int> leaves(n-1);
leaves[0]=min([n]-{seq[0],seq[1],...,seq[n-3]});
A.add({seq[0],leaves[0]});
int k=1;
while(k < n-2) {
  leaves[k]=min([n]-{seq[k],seq[k+1],...,seq[n-3],leaves[0],...,leaves[k-1]});
  A.add({seq[k],leaves[k]});
  k++;
}
leaves[n-2]=min([n]-{leaves[0],...,leaves[n-3]});
A.add({leaves[n-2],n});
return ([n],A);
}

```