Graph theory

M1 - FIB

Contents:

1. Graphs: basic concepts

2. Walks, connectivity and distance
3. Eulerian and Hamiltonian graphs
4. Trees

Anna de Mier
Montserrat Maureso
Departament de Matematiques

Translation: Oriol Cano, Anna de Mier
February 2023

Graphs: basic concepts

Al

First definitions
Degrees

Graph isomorphism

. Types of graphs

Subgraphs

Chapter 1

1. First definitions

A graph G is a pair (V, E) where V is a non-empty finite set and E is a set of
unordered pairs of different elements of V/, thatis, E C {{u,v}:u,v e V}

We call
the elements of V/, vertices
the elements of E, edges
the number of vertices, |V/|, the order of G
the number of edges, |E|, the size of G

Let u, v € V be vertices and a, e € E be edges of G. We will say that:
u and v are adjacent or neighbours if {u, v} € E, for short u ~ v or uv € E
u and e are incident if e = {u, w}, for some w € V e and a are incident
if they have a vertex in common
u has degree d(u) if the number of vertices adjacent to v is d(u), that is,
d(u) =#{v e V]u~ v}

Observation: If n = |V| and m = |E]|, then

n(n—1)
2

0<m< and 0<d(v)<n—1 forall veV

Drawing of a graph G = (V, E)

The vertices are represented by a dot and each edge by a curve joining the two
dots corresponding to the vertices incident to that edge

Adjacency list (or adjacency table) of a graph G = (V/, E)

Let vi, v, ..., v, be the vertices of G. The adjacency list of G is a list of length
n where position i contains the set of vertices adjacent to v;, for all / € [n]

Let G = (V, E) be a graph of order n and size m with V = {w, v, ..., v,} and
E=1{a1,a,..,an}

The adjacency matrix of G is the matrix My = Mu(G) of type n x n, such that
the entry mj; in the i-th row and j-th column is

1, ifvi~y
0, otherwise

— My is binary, with zeros in the diagonal, and symmetric
— The number of ones in the i-th row is the degree of v;
— It is not unique, it depends on the ordering chosen for the set of vertices

Variations on the definition of graph:

> Multigraph: a graph that admits multiple edges, that is, there can be more
than one edge joining two vertices

> Pseudograph: a graph that admits multiple edges and loops (edges that join
a vertex with itself)

> Directed graph: a graph where the edges are oriented

2. Degrees

Let G = (V/, E) be a graph of order n and let v € V be a vertex. Define
the minimum degree of G, J(G): the minimum of the degrees
the maximum degree of G, A(G): the maximum of the degrees
the degree sequence of G: the sequence of the degrees in decreasing order
a regular graph: a graph such that §(G) = A(G), i.e., all the vertices have
the same degree

Observation:

— All graphs of order > 2 have at least two vertices with the same degree

Handshaking lemma: 2|E| = Z d(v)

veVv

Corollary All graphs have an even number of vertices with odd degree

A decreasing sequence of integers is graphical if there is some graph that has it
as a degree sequence

3. Graph isomorphism

Let G =(V,E) and G’ = (V’, E’) be two graphs. We will say that
> G and G' areequal, G=G',if V=V and E = E’
> G and G’ are isomorphic, G = G’, if there is a bijective map f : V — V/,

such that, for all u,v € V,

ur~v<sf(u)~f(v).

The map f is called an isomorphism from G to G’

Remarks:
— A vertex and its image by an isomorphism have the same degree

— Two isomorphic graphs have the same size and order. The converse is false
— Two isomorphic graphs have the same degree sequence. The converse is false

— Being isomorphic is an equivalence relation

4. Types of graphs

Let n be a positive integer and V = {x1, xo, ..., Xp}

Null graph of order n, N,: is a graph with order n and size 0
Trivial graph: N,

Complete graph of order n, K,: is a graph of order n with all possible edges

— Size of Kn:@

Path of order n, P, = (V, E): is a graph of order n and size n — 1 with set of
edges £ = {x1x2, XoX3, ..., Xp—1Xn}
- 6(P,) =1and A(P,) =2

Cycle of order n, n > 3, C, = (V, E), with n > 3: is a graph of order n and
size n with set of edges E = {x1x2, XoX3, ..., Xp—1Xn, XpX1 }
- 6(Cy) = A(G,) =2

Wheel of order n, n > 4, W, = (V, E): is a graph of order n and size 2n — 2
such that E = {x1x0, x0X3, ..., Xa—1X1} U {XuX1, XpX2, -+ s XpXn—1}

Let r and s be positive integers

An r-regular graph is a regular graph where r is the degree of the vertices

— The complete graph K, is an (n — 1)-regular graph
— The cycle graph C, is a 2-regular graph
—If G = (V, E) is an r-regular graph, then 2|E| = r|V/|

A bipartite graph is a graph G = (V/, E) such that there are two non-empty
subsets V; and V5, of V such that V =V, U VW, and V; NV, = (), and for each
edge uv € E we have that u € V; and v € V>, or vice versa.

We call V7 and V, the stable parts of the graph

- > g(v)=) g(v)=|E|

veVy veVy

The complete bipartite graph K, = (V, E) is a bipartite graph with two stable
parts Vi and V; such that |Vi| = r and |V,| = s and all the vertices of V; are
adjacent to all the vertices of V5. l.e., E = {uv|u e Vi, v € V,}

— The order of K, s is r + s and the size is rs

— The graph Kj . is called star graph

5. Subgraphs

Let G = (V/, E) be a graph

Subgraph of G, G’ = (V', E’): a graph with V' C V and E' C E

Spanning subgraph of G, G' = (V' E’): a subgraph such that V' =V

Subgraph induced by S C V: the graph G[S] = (S, E’) such that E' = {uv €
E:uvesS}

5.1. Graphs derived from a graph

Let G = (V/, E) be a graph of order n and size m

Complement of G, G = (V¢ E°): is the graph with set of vertices V¢ =
and set of edges £E€ = {uv|u,v € V and uv ¢ E}

— The order of G¢ equals the order of G

— The size of G is - (" D _|E|

— (Gc) — G

— Let H be a graph. Then G = H & G = H¢

The graph G is self-complementary if G = G°

For S C V, the graph G — S obtained by deleting the vertices from S is the
graph with set of vertices V' \ S and whose edges are those that are not incident
to any of the vertices of S. In the case that S = {v}, we denote it by G — v

— The order of (G — u) is n— 1. The size of (G — u) is m — d(u)

For S C E, the graph G — S obtained by deleting the edges from S is the graph
with set of vertices V' and set of edges E\ S. In the case that S = {e}, we

denote it by G — e
— The order and size of G — e are n and m — 1, respectively

The graph G + e obtained by adding an edge e € E is the graph with set of

vertices V and set of edges E' = E U {e}
— The order of G + e is n and its size is m+ 1

5.2. Operations with graphs
Let G =(V,E) and G' = (V’, E’) be two graphs

Union of G and G’, G U G’: graph with set of vertices V U V'’ and set of edges
EUE
—If VN V' =0, the order of GU G’ is |V|+ |V’| and the size is |E| + |E’|

Product of G and G’, G x G’: graph with set of vertices V x V' and adjacencies
given by

(u, ') ~(v,V)& (uve Eand v’ = V') or (u=v andu'v' € E')
— The order of G x G"is |V||V’| and its size is |V| |E'| + |V'| |E|

Chapter 2

Walks, connectivity and distance

. Walks
Connected graphs
Cut vertices and bridges

Distance

Al

Characterization of bipartite graphs

1. Walks

Let G = (V, E) be a graph, and let u,v € V

A walk from u to v, or a u-v walk, of length k is a sequence of vertices and
edges
R : UpaiUuiasUy ... U _—_1dKUgk

such that vy = u, uy = v and a; = u;_qu; € E, for all i € [k]. In general, we
just write uguiUy ... Ug_1Ug

We say that the walk R visits the vertices u; and visits the edges a; = u;_1u;

If u = v we say that it is a closed walk, and if u # v we say that it is an open
walk

A vertex is considered to be a walk of length zero

Kinds of walks: a u-v walk is a
— path if all vertices are different

— cycle if it is a closed walk of length > 3 and all vertices are different
A vertex is considered to be a path of length zero

Remark A cycle visits two vertices u and v if, and only if, there are two u-v
paths without any common vertex except u and v

A graph without cycles is called an acyclic graph

Proposition 1

Let G = (V/, E) be a graph and u, v different vertices. If there is in G a u-v
walk of length k, then there is a u-v path of length < k

Proposition 2

Let G = (V, E) be a graph and u, v different vertices. If G has two different
u-v paths, then G has a cycle.

2. Connected graphs

We say that a graph G = (G, E) is connected if for every pair of vertices u and
v there is a u-v path. Otherwise we say that the graph is disconnected

Remark If G = (V,E) is a connected graph of order greater than 1, then
div) >1 forallveV

We define the following relation R in V: for all x,y € V

xRy < thereis an x — y path in G

R is an equivalence relation:

— Reflexive, xRx: there is an x-x path of length zero

— Symmetric, if xRy, then yRx: an x-y path traversed in opposite direction
Is a y-x path

— Transitive, if xRy and yRz, then xRz: from an x-y path xx; ... x,y and a
y-z path yyi ... ymz, we build an x-v walk xxq ... X,yy1 ... ymZ, thus,
there is an x-z path

If G =(V, E) is a disconnected graph there is a partition of V in k > 1 subsets
Vi, V5, ..., Vi, which are the equivalence classes of the relation R. Therefore,
forall 1 <i,j <k,

1. Vi#0, VinVi=0foralli#j and V = J, V,
2. G[Vj] (the subgraph induced by V;) is connected

3. There is no path between vertices of G[V;] and vertices from G[V/]|, with
i 7 J
4.6 =L, 6V

The subgraphs G[V4], G[V5], ..., G[V)] are called the connected components of
G

Remark

Llet G = Gi U Gy U --- U Gy, where G; are the connected components of G.

Then
order G

size G

order Gy + - - - + order Gy
size Gy + - -- + size G

Proposition 3

A graph is 2-regular if, and only if, its connected components are cycles.

Proposition 4
Let G = (V/, E) be a connected graph and let e = xy € E and u € V. Then

1. The graph G — e has at most 2 connected components; if it has 2, vertex x
belongs to one of them and vertex y to the other

2. The graph G — u has at most d(u) connected components

Proposition 5

Every connected graph of order n has at least n — 1 edges

2.1 Algorithm DFS: (Depth-first search)

DFS list(graph G, int v)
/* Pre: a graph G and a vertex v (assume that the vertices are integers)
/* Post: the list of vertices of G that belong to the same connected component as v
{
Stack S;
S.push(v);
List W;
W.add(v);
int x;
while (not S.is_empty) {
x=3.top;
if (’’there is y adjacent to x that does not belong to W’’) {
S.push(y);
W.add(y);
X
else {
S.pop;
X
+
return W;

}

Theorem 6 Let G = (V, E) be a graph and v a vertex of G. The subgraph
G[W] induced by the vertices of G visited by the algorithm DFS is the connected
component of G that contains v

3. Cut vertices and bridges

Let G = (V,E) be a graph and let v € V and e € E. We say that

— v is a cut vertex or articulation point if G — v has more connected
components than G

— e is a bridge if G — e has more connected components than G

Remarks

1. If G is connected and u is a cut vertex, then G — u is a disconnected graph
with at most d(u) connected components

2. The vertices of degree 1 are not cut vertices

3. If G is connected and e is a bridge, then G — e is a disconnected graph
with exactly 2 connected components

Theorem 7 Characterization of cut vertices

Let G = (V/, E) be a connected graph. A vertex u of G is a cut vertex if, and
only if, there exists a pair of vertices x, y different from u such that every x-y
path visits u

Theorem 8 Characterization of bridges

Let G = (V/, E) be a connected graph and e = uv an edge of G. The following
are equivalent:

(a) e is a bridge
(b) there exists a pair of vertices x, y such that every x-y path visits e

(c) no cycle contains e

Remarks
1. A graph may have cut vertices and no bridges

2. Let e = uv be a bridge. If d(u) =1, v is not a cut vertex;
if d(u) > 2, the vertex u is a cut vertex

3. The only connected graph with a bridge and without cut vertices is K,

4. Distance

Let G = (V, E) be a graph and v, v vertices of G

— If u,v are in the same connected component, we define the distance
between v and v, d(u, v), as the minimum value among the lengths of all
u-v paths. Otherwise we say that the distance is infinite

— The eccentricity of vertex u, e(u), is the maximum distance between u
and any other vertex of G, that is, e(u) = max{d(u, v)|v € V}

— The diameter of G, D(G), is the maximum of the distances between the

vertices of G, or, equivalently, the maximum of the eccentricities; that is,
D(G) = max{d(u,v)|u,v € V} = max{e(u)|u € V}
— The radius of G, r(G), is the minimum of the eccentricities of the
vertices of G, thatis, r(G) = min{d(u, v)|u,v € V} = max{e(u)|u € V}
— The central vertices of G, are the vertices whose eccentricities equal the
radius, that is, the set {u € V : e(u) = r(G)}

— The center of G is the subgraph induced by the central vertices

Remarks

1. xye E & dx,y)=1
2. G is not connected < D(G) =00 & r(G) =00 & e(u) =00,V ueV
3. The following inequality holds r(G) < D(G) < 2r(G)

In a (connected) graph G = (V/, E), the following hold for all vertices u, v, z
1. d(u,v) >0, and d(u,v) =0 if, and only if, u=v
2. d(u,v)=d(v,u)
3. d(u,v)+d(v,z) > d(u, z) (triangle inequality)

4.1 Algorithm BFS: (Breadth First Search)

vector BFS(graph G, int v)
/* Pre: a connected graph G of order n and a vertex v (assume that the vertices are integers)
/* Post: a vector D such that D[x]=d(v,x)
{
Queue Q;
Q.enqueue (v) ;
List W;
W.add(v);
vector<int> D(n);
D[v]=0;
int x;
while (not Q.is_empty) {
x=0Q.front;
if (’’there is y adjacent to x and y does not belong to W’’) {
Q.enqueue(y);
W.add(y);
D[yl=D[x]+1;
X
else {
Q.advance;
+
+
return D;

¥

Theorem 9 Let G = (V, E) be a graph and v € V. The vector D given by the algorithm
BFS stores the distance from vertex v to all other vertices in the graph

Chapter 3

Eulerian and Hamiltonian graphs

1. Eulerian graphs
2. Hamiltonian graphs

1. Eulerian graphs

A walk in a graph is called a trail if it is open and it does not repeat any edges,
and it is called a circuit if it is closed, non-trivial, and does not repeat any
edges.

Let G be a connected graph.

— An Eulerian trail is a trail that visits all the edges of G
— An Eulerian circuit is a circuit that visits all the edges of G

— An Eulerian graph is a graph that has an Eulerian circuit

Theorem Characterization of Eulerian graphs

Let G be a connected, non-trivial graph. Then,
G is Eulerian if, and only if, all its vertices have even degree

Corollary

A connected graph has an Eulerian trail if, and only if, it has exactly two
vertices of odd degree

In that case, the Eulerian trail starts at a vertex of odd degree and finishes at
the other vertex of odd degree

2. Hamiltonian graphs

Let G be a connected graph.
— A Hamiltonian path is a path that visits all the vertices of G
— A Hamiltonian cycle is a cycle that visits all the vertices of G

— A Hamiltonian graph is a graph that has a Hamiltonian cycle

Necessary conditions

Let G = (V/, E) be a Hamiltonian graph of order n, then
(1) d(v) > 2, forall ve V
(2)ifSC Vand k=S

, the graph G — S has at most k connected components

Sufficient conditions

Ore’'s Theorem Let G = (V, E) be a graph of order n > 3 such that for all
different and non adjacent u,v € V we have d(u) + d(v) > n. Then, G is a
Hamiltonian graph

Dirac’s Theorem Let G = (V,E) be a graph of order n > 3 such that
d(u) > n/2, for all u € V. Then, G is Hamiltonian

Chapter 4

Trees

1. Trees and the characterization theorem
2. Spanning trees

3. Counting trees

1. Trees and the characterization theorem

— A tree is a connected acyclic graph
— A forest is an acyclic graph
— A leaf is a vertex of a tree or a forest that has degree 1

Observation: The connected components of a forest are trees

Remarks: Let T = (V/, E) be a tree, e an edge and v a vertex of T. Then
T contains at least one leaf

e is a bridge

T — e is a forest with 2 connected components

if d(u) > 2, then u is a cut vertex

T — u is a forest with d(u) connected components

S s -

if uis aleaf, then T — u is a tree

Proposition 1
All acyclic graphs of order n have size at most n — 1.

Theorem 2 Characterization of trees
Let T = (V, E) be a graph of order n and size m. The following are equivalent

a T i1s a tree

)
b) T isacyclicand m=n-1

T is connected and m=n—1

@

)
d) T is connected and all edges are bridges

(
(
(
(
(e) for each pair of vertices u and v there is a unique u-v path in T
(f)

f T is acyclic and the addition of an edge creates exactly one cycle

Corollary 3
A forest G of order n with k connected components has size n — k

Corollary 4
If T is a tree of order n > 2, T has at least two leaves

2. Spanning trees

A spanning tree of a subgraph G is a spanning subgraph of G that is a tree

Theorem 5
A graph G = (V/, E) is connected if, and only if, G has a spanning tree

2.1 DFS algorithm to obtain spanning trees

DFS tree(graph G, int v)
/* Pre: a graph G and a vertex v
/* Post: a spanning tree of the connected component of G to which v belongs
{
Stack S;
S.push(v);
List W;
W.add(v);
List B;
int x;
while (not S.is_empty) {
x=S.top;
if (’’exists y adjacent to x that does not belong to W’’) {
S.push(y);
W.add(y);
B.add (xy) ;
}
else {
S.pop;
}
+
return (W,B);
}

Theorem 6
T = (W, B) is a spanning tree of the connected component containing v

2.2 BFS algorithm to obtain spanning trees

BFS tree(graph G, int v)
/* Pre: a connected graph G of order n and a vertex v
/* Post: a spanning tree of the connected component of G to which v belongs
{
Queue Q;
Q.enqueue (v) ;
List W;
W.add(v);
List B;
int x;
while (not Q.is_empty) {
x=Q.peek;
if(’’exists y adjacent to x that does not belong to W’’) {
Q.enqueue(y);
W.add(y);
B.add (xy) ;
X
else {
Q.dequeue;
Iy
}
return (W,B);
+

Theorem 7
T = (W, B) is a spanning tree of the connected component containing v

3. Counting trees

Cayley’s formula

The number of different spanning trees of the complete graph K, is n"—2

The theorem is equivalent to saying that the number of different trees with set
of vertices [n] is n"2

The proof is based in the construction of a bijective map

Pr:{T : T spanning tree of K,} — [n]""?,

The Prufer's sequence of T is the image of T by the map Pr:
Pr(T) = (31, an, - -, an_z)

e Construction of the Priifer's sequence of a tree T = ([n], E)
Recursive construction

vector seqPrufer(tree T, int n)
/* Pre: a tree T with set of vertices {1,2,...,n}
/* Post: a vector of length n-2 containing the Priifer’s sequence of T

{
tree Taux=T,
int k=0;
int leaf;
vector<int> seq(n)
while(k < n-2) {
leaf=’’leaf of Taux with the smallest label’’;
seqlk]=’’vertex adjacent to leaf’’;
Taux=Taux-leaf;
k++;
}
return seq;

+

Comments:

Let by, ..., b,—» be the vertices of T that at some point in the execution have
been a leaf

— Taux is a tree at each step of the algorithm

— the vertices by, ..., b,_» are pairwise different

— T —{by,..., b2} ~ K,

— n is one of the vertices of T — {by, ..., by_2}

— x € [n] appears in the Priifer's sequence as many times as d(x) — 1

— the vertices that do not appear in the Prufer's sequence are leaves of T

e Reconstruction of the tree T from a word (a1, ..., a,_2) in the alphabet [n].
|.e., the inverse map of Pr

tree PruferTree(vector<int> seq, int n)
/* Pre: a vector with n-2 integers between 1 and n
/* Post: the tree that has seq as Priifer’s sequence

{
List A;
vector<int> leaves(n-1);
leaves[0]=min([n]-{seq[0],seqll],...,seq[n-31});
A.add({seq[0] ,leaves[0]});
int k=1;
while(k < n-2) {
leaves[k]=min([n]-{seql[k],seqlk+1],...,seq[n-3],leaves[0],...,leaves[k-1]1});
A.add({seqlk],leaves[k]});
k++;
+
leaves[n-2]=min([n]-{leaves[0],...,leaves[n-3]});
A.add({leaves[n-2],n});
return ([n],A);
+

