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The problems of this course mainly follow the articles by Victor Guillemin, Eva Miranda, Ana Rita
Pires, Geoffrey Scott, Jonathan Weitsman and others. We would refer the reader to [GMP11], [GMP14],
[GMPS15], [GMPS17], [GMW18b], [GMW18a], [GMW19], [GMW21] and [KMS16] to cite a few places
to check the basics and not-so-basics of b-symplectic geometry.

1 Problem session 2. Classical problems for bm-symplectic and
bm-contact manifolds. Toric actions, action-angle coordinates
and integrable systems on bm-symplectic manifolds. Pertur-
bations of integrable systems and KAM theory

Exercise 1.1. Let (Mn,Π) an orientable, connected Poisson manifold. Then, we know that Ωn(M) ∼=
C∞(M). We define the modular vector field as

XΩ
Π : C∞(M) −→ C∞(M)

f 7−→ LufΩ

Ω

,

or, more formally, XΩ
Π(f) is the only function such that LufΩ = XΩ

Π(f)Ω. Here, uf denotes the Hamil-
tonian vector field of f , this means, such that uf (g) = {f, g}.

a) Show that XΩ
Π is a well defined derivation.

b) Show that, for any H ∈ C∞(M) nowhere vanishing,

XHΩ
Π = XΩ

Π − ulog |H|.

c) Let (M2m, ω) a symplectic manifold. Show that the modular vector field XΩ
ω−1 is a Hamiltonian

vector field.

(Hint: Compute the modular vector field in local Darboux coordinates and use the previous part of
the exercise to get the global result)

d) Compute the modular vector field for the b-Poisson manifold (R2, {·, ·}), where {x, y} = y.

Solutions:

a) First of all, let us note that the map u· : C∞(M)→ X(M) that assigns the Hamiltonian vector field
to a function is itself a derivation. Thus,

uαf+βg = αuf + βug ; ufg = guf + fug.

Therefore, we can check that XΩ
Π acts linearly on functions,

XΩ
Π(αf + βg) =

Lαf+βgΩ

Ω
=
αLfΩ + βLgΩ

Ω
= α
LfΩ

Ω
+ β
LgΩ

Ω
= αXΩ

Π(f) + βXΩ
Π(g).

Also, it satisfies the Leibniz rule:

XΩ
Π(fg) =

LfgΩ
Ω

=
gLfΩ + fLgΩ

Ω
= g
LfΩ

Ω
+ f
LgΩ

Ω
= gXΩ

Π(f) + fXΩ
Π(g).

b) First of all, let us note that

ulog |H|(f) = {log |H|, f} = −{f, log |H|} = −uf (log |H|) = − 1

H
uf (H).

Now, let us apply the definition of modular vector field to check that

XHΩ
Π (f)Ω =

1

H
XHΩ

Π (f)HΩ =
1

H
Luf (HΩ) = Luf (Ω) +

1

H
uf (H)Ω,

and combining the definition of modular vector field with the previous computation we deduce that

Luf (Ω) +
1

H
uf (H)Ω =

(
XΩ

Π(f) + ulog |H|(f)
)

Ω.
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c) First of all, as ωk is a volume form for M2k, this means that Ω = Fωk for some non-vanishing
function F . Therefore, for this proof we can assume that Ω = ωk without loss of generality.

Let us restrict to a Darboux open set with canonical coordinates (x1, y1, ..., xk, yk). Thus, locally
the symplectic form is given by

ω =

k∑
i=1

dxi ∧ dyi.

We will compute the expression in local coordinates of Xωk

ω−1(f) for a given function f ∈ C∞(M).

The Hamiltonian vector field of f can be seen to be

uf =

k∑
i=1

(
∂f

∂yi

∂

∂xi
− ∂f

∂xi

∂

∂yi

)
,

and thus, using Cartan’s formula,

Lufωk = d(iufω
k) = d

(
iuf (dx1 ∧ dy1 ∧ · · · ∧ dxk ∧ dyk)

)
=

= d

(
k∑
i=1

(
∂f

∂yi
dx1 ∧ dy1 ∧ · · · ∧ d̂xi ∧ · · · ∧ dxk ∧ dyk +

∂f

∂xi
dx1 ∧ dy1 ∧ · · · ∧ d̂yi ∧ · · · ∧ dxk ∧ dyk

))
=

=

(
k∑
i=1

(
∂2f

∂xi∂yi
− ∂2f

∂yixi

))
dx1 ∧ dy1 ∧ · · · ∧ dxk ∧ dyk =

= 0.

This means that Xωk

ω−1 = 0, and thus the modular vector field of a symplectic manifold is always
Hamiltonian, with the factor F as Hamiltonian function.

d) By the definition of the Poisson bracket, we deduce that

{f, g} = y
∂f

∂x

∂g

∂y
− y ∂f

∂y

∂g

∂x
,

so

uf = y
∂f

∂x

∂

∂y
− y ∂f

∂y

∂

∂x
.

As in the last section, we can work with the simplest volume form possible, this means, Ω = dx∧dy.

Using Cartan’s formula to compute LufΩ,

diufΩ = d

(
y

(
−∂f
∂x
dx− ∂f

∂y
dy

))
=

= −dy ∧
(
∂f

∂x
dx+

∂f

∂y
dy

)
=

=
∂f

∂x
dx ∧ dy.

Therefore, Xdx∧dy
π = ∂

∂x , which is not a Hamiltonian vector field.

In general, if Ω = Fdx ∧ dy, then XΩ
π = ∂

∂x − ulog |F |.

Exercise 1.2. Consider Λ∗(M) the algebra of multivector fields. Recall that the Schouten-Nijenhuis
bracket is a bilinear map

[·, ·] : Λk(M)× Λl(M) −→ Λ(k−1)(l−1)(M)

such that

(i) [a, b] = (−1)(|a|−1)(|b|−1)[b, a]

(ii) [a, [b, c]] = [[a, b], c] + (−1)(|a|−1)(|b|−1)[b, [a, c]]
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(iii) If |a| = 1, then [a, b] = Lab

(iv) If f ∈ C∞(M), then [f, a] = −idf (a).

Let Π ∈ Λ2(M) a Poisson structure, and let

dkΠ : Λk(M) −→ Λk+1(M)
V 7−→ [Π, V ]

.

a) Show that d∗Π is a cochain differential. This means, prove that dk+1
Π ◦ dkΠ = 0.

The resulting cohomology, denoted by H∗Π(M), is called Poisson cohomology.

b) What do the classes of H1
Π(M) represent?

Solutions:

1. By abuse of notation, let us just write dΠ. Then,

d2
Π(V ) = [Π, [Π, V ]] = [[Π,Π], V ] + (−1)(2−1)(2−1)[Π, [Π, V ]] = [[Π,Π], V ]− [Π, [Π, V ]].

As Π is a Poisson structure, [Π,Π] = 0. Then,

[Π, [Π, V ]] = −[Π, [Π, V ]] = 0

2. The second cohomology group of the Poisson complex is the quotient of ker
(
d1

Π

)
by im

(
d0

Π

)
, so we

need to understand both spaces:

ker
(
d1

Π

)
= {X ∈ X(M) | [Π, X] = 0},

and
[Π, X] = [X,Π] = LXΠ.

So the elements of ker
(
d1

Π

)
are vector fields that preserve the Poisson structure, also called Poisson

vector fields.

On the other hand, by the definition of the Schouten-Nijenhuis bracket,

im
(
d0

Π

)
= {[Π, f ] | f ∈ C∞(M)},

where
[Π, f ] = −[f,Π] = idf (Π) = Π(df, ·) = uf ,

the Hamiltonian vector field of f .

Thus, im
(
d0

Π

)
is precisely the space of Hamiltonian vector fields.

Thus, H1
Π(M) is the space of Poisson vector fields quociented by the space of Hamiltonian vector

fields. Rephrasing, for any Poisson vector field v we have a class

[v] = {v + uf | f ∈ C∞(M)}.

Exercise 1.3. Consider the b-symplectic manifold (S2, Z = {h = 0}, ω = dh
h ∧dθ), where the coordinates

on the sphere are h ∈ [−1, 1] and θ ∈ [0, 2π]. Compute a moment map of the S1-action given by the flow
of − ∂

∂θ and draw its image.

Solution: A moment map on M\Z is µ(h, θ) = log |h|.
We can find it by direct computation:

ιXω = −dµ ⇐⇒ (1)

⇐⇒ ι ∂
−∂θ

1

h
dh ∧ dθ = −dµ ⇐⇒ (2)

⇐⇒ 1

h
dh = −dµ ⇐⇒ (3)

⇐⇒ d (log |h|) = −dµ ⇐⇒ (4)

⇐⇒ − log |h| = µ (5)
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The image of µ(h, θ) = − log |h| is R+, the positive half-line in which each point has two connected
components in its preimage: one in the northern hemisphere, and one in the southern hemisphere. By
enlarging the codomain of our moment map to include points ”at infinity”, we can define moment maps
for torus actions on a b-manifold that enjoy many of the same properties as classic moment maps: they
will be everywhere defined and their image will be a parameter space for the orbits of the action.

µ = − log |h|

Exercise 1.4. Consider the b-symplectic manifold

(T2, Z = {θ1 ∈ {0, π}}, ω =
dθ1

sin θ1
∧ dθ2),

where the coordinates on the torus are θ1, θ2 ∈ [0, 2π]. Find the bC∞ Hamiltonian function of the circle
action of rotation on the θ2 coordinate and draw it.

Solution:
With the same procedure as in the previous exercise, we find that the bC∞ Hamiltonian function

log
∣∣∣ 1+cos θ1

sin θ1

∣∣∣ gives the moment map of the circle action of rotation on the θ2 coordinate.

µ = log
∣∣∣ 1+cos θ1

sin θ1

∣∣∣

In the following picture, courtesy of Pablo Nicolás, we can see with more precision the moment image
of the distinct θ1-circles.

Figure 1: *
Moment map of the toric action of S1 on bT 2.
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Exercise 1.5. The moment image of a 2n-dimensional b-symplectic toric manifold is represented by an
n-dimensional polytope P , and the corresponding extremal polytope ∆P is an (n−1)-dimensional Delzant
polytope. Describe the extremal polytope for n = 1 and n = 2.

Solution:
For n = 1, the extremal polytope is a point, and therefore a b-symplectic toric surface is equivariantly

b-symplectomorphic to either a b-symplectic torus T2 or a b-symplectic sphere.
For n = 2, the extremal polytope is a line segment, corresponding to a symplectic toric sphere. As

a consequence, a b-symplectic toric 4-manifold is equivariantly b-symplectomorphic to either a product
T2 × S2 of a b-symplectic torus with a symplectic sphere, or to a manifold obtained from the product
S2 × S2 of two spheres, one b-symplectic and the other symplectic, by a series of symplectic cuts which
avoid Z. In particular, CP 2#CP 2 can be obtained from a b-symplectic S2 × S2 with connected Z
via symplectic cutting and therefore can be endowed with a b-symplectic toric structure. Because Z
was connected (in fact, it would suffice for Z to have an odd number of connected components), there
will be fixed points in both the portion of the manifold with positive orientation and in the one with
negative orientation. Blowing up these fixed points (each such blow up destroys one fixed point and
creates two new ones with the same orientation) corresponds to performing connect sum with either CP 2

or CP 2, according to the orientation. Therefore, any mCP 2#nCP 2, with m,n ≥ 1 can be endowed
with b-symplectic toric structures. Observe that CP 2#nCP 2, with n ≥ 1 admits both symplectic and
b-symplectic toric structures.

Exercise 1.6. Compute the moment map of the toric action T2 on CP 2 given by ((θ1, θ2), [z0 : z1 : z2]) 7→
([z0 : eiθ1z1 : eiθ2z2]). Then, construct a b-toric manifold applying symplectic blow-up and the Gompf
sum on CP 2 such that:

• it has 6 fixed points, or

• it has 12 fixed points.

What you will obtain is a Hirzebruch surface.

Solution:
Let us start by computing the moment map of a simpler action, the one of S1 on C given by

(t, z) 7→ eitz.

We can compute explicitly the infinitesimal generator of this action:

X =
d

dt

∣∣∣
t=0

eitz = iz

Then, in via the change x+ iy = z to real coordinates we arrive to

Xx
∂

∂x
+ iXy

∂

∂y
= X = i(x+ iy) = ix− y

Hence, equaling complex and X = −y ∂
∂x + x ∂

∂y .
Now, we can compute

ι−y ∂
∂x+x ∂

∂y
dx ∧ dy = −dµ ⇐⇒ (6)

⇐⇒ − xdx− ydy = −dµ ⇐⇒ (7)

⇐⇒ − d
(
x2

2
+
y2

2

)
= −dµ ⇐⇒ (8)

⇐⇒ d

(
|z|2

2

)
= dµ ⇐⇒ (9)

⇐⇒ |z|
2

2
= µ (10)

Then, it is clear that for each rotation of S1 in a component of coordinate z, we obtain a moment

map of µ = |z|2
2 .

In consequence, in the case of the toric action T2 on C3 given by ((θ1, θ2), (z0, z1, z2)) 7→ (z0, e
iθ1z1, e

iθ2z2]),

we would obtain the moment map µ =
(
|z1|2

2 , |z2|
2

2

)
.
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Finally, in the case of the toric action T2 on CP 2 given by ((θ1, θ2), [z0 : z1 : z2]) 7→ ([z0 : eiθ1z1 :
eiθ2z2]), we would obtain the same moment map but normalized, since in this case [z0 : z1 : z2] are
homogeneous coordinates of CP 2.

µ([z0 : z1 : z2]) = 1
2

(
|z1|2

|z0|2+|z1|2+|z2|2 ,
|z2|2

|z0|2+|z1|2+|z2|2

)
To see that the normalization factor is |z0|2 + |z1|2 + |z2|2, think of the embedding of S5 on C3 and

also on the complex Hopf fibration by circle bundles S5 → CP 2.
The fixed points of µ([z0 : z1 : z2]) are [1 : 0 : 0], [0 : 1 : 0] and [0 : 0 : 1], and have as images,

respectively, (0, 0), (1/2, 0) and (0, 1/2). Then, we know that the Delzant polytope is the triangle produced
by the convex hull of these three points, which are its vertices.

Now, we can apply b-symplectic cutting to the moment map of this action on CP 2 [KK07] to obtain,
after each symplectic cut near a vertex, a copy of CP 2 that is attached to the former CP 2 via the
symplectic or Gompf sum. Now, if we sum this manifold, at its turn, to a b-symplectic toric surface (i.e.,
the b-symplectic sphere or the b-symplectic torus) we obtain the b-symplectic manifold we were looking
for.

-

q q

q

ppppppppppp
ppppp

@
@

@
@
@

@
@

@
@@

ppppppppppp
ppppp

p p p p p p p p p p p p p p p p
-

q p p qp pp pq qp pp pp pq q

@
@

@@ ppppppppppp
@

@
@@

p p p p p pp
pppppppppp

pppppppppppp p p p p pppppppppppp q qq qq qq qq qq q
@@

H
HH

@@

��

A
AA

HHH��

A
AA

From CP 2 we can obtain CP 2#3CP 2 after 3 symplectic cuts. Then, from CP 2#3CP 2 we can obtain
CP 2#9CP 2 after 6 symplectic cuts.

The following exercises are related with the cotangent lift, which is an essential tool since Arnold-
Liouville-Mineur Theorem can be restated in a cotangent lift version ([KM17]). These problems also
show the connection of singularities with physical systems.

Exercise 1.7. The coupling of two harmonic oscillators gives can be modelled in T ∗(R2). Check that, in
this system, the energy function

H =
1

2
(y2

1 + y2
2) +

1

2
(x2

1 + x2
2)

and the angular momentum function
L = x1y2 − x2y1

Poisson commute. I.e. check that {H,L} = 0.

Solution: Recall that, in the particular case of a symplectic manifold with the canonical coordinates,
the Poisson bracket has the form

{f, g} =

n∑
i=1

(
∂f

∂xi

∂g

∂yi
− ∂f

∂yi

∂g

∂xi

)
.

Then,

{H,L} =
∂H

∂x1

∂L

∂y1
− ∂H

∂y1

∂L

∂x1
+
∂H

∂x2

∂L

∂y2
− ∂H

∂y2

∂L

∂x2
.

Computing,

{H,L} = −x1x2 − y1y2 + x2x1 + y2y1 = 0.

Exercise 1.8. Prove that the singularity at the top of the spherical pendulum is of focus-focus type. Hint:
use local coordinates (x, y, z) = (x, y,

√
l2 − x2 − y2).

Solution:
The most basic physical example of a singularity of focus-focus type comes from the spherical pendu-

lum. Consider a point of mass m attached to an end of a rigid massless rod of length l and assume that
the other end of the rod is fixed at the origin and that the mass can move freely as long as it remains
attached to the rod, as in Figure 2. The mass can move, then, on a sphere of radius l.
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θ

ϕ

Fg

Figure 2: The spherical pendulum.

The natural phase space is the cotangent bundle T ∗S2 and, while spherical coordinates are the optimal
setting to study the dynamics of the spherical pendulum, Cartesian coordinates are more appropriated
to analyze the singularities of the system. In Cartesian, the position of the point of mass will be given
by ~r = (x, y, z), with ‖~r‖ = l. The conjugate variable to ~r is the linear momentum of the point,

~p = (px, py, pz) = ṁ~r, which has to satisfy ~r · ~p = 0 in order to be contained in the tangent space of the
sphere.

The Hamiltonian of the system is the sum of kinetic and potential energies and in the symplectic
setting (R6, ω = dx ∧ dpx + dy ∧ dpy + dz ∧ dpz) writes as:

H(~r, ~p) =
‖~p‖2

2m
+mgl

~r · ẑ
‖~r‖

, (11)

where g accounts for the gravity acceleration and ẑ is the unit vector in the z direction. There is
another conserved quantity, the angular momentum in the z direction: L := Lz = xpy − ypx. H and L
satisfy {H,L} = 0 and are independent almost everywhere. Hence, they form the Liouville integrable
system corresponding the spherical pendulum.

There are two singularities in the pendulum system, one corresponding to z = −l (or to ~r− = (0, 0,−l))
and the other one to z = l (or to ~r+ = (0, 0, l)). We are interested in ~r+, the unstable equilibrium, where
we are going to identify the focus-focus singularity.

To study the system near z = l, we use that z =
√
l2 − x2 − y2 and take local coordinates (x, y, z) =

(x, y,
√
l2 − x2 − y2). The conjugate momentum ~p = (px, py, pz) satisfies locally that pz = 0. In these

symplectic coordinates the symplectic form is ω = dx∧dpx+dy∧dpy and the Hamiltonian of the system
writes as:

H =
1

2ml2
(
p2
x(l2 − x2) + p2

y(l2 − y2)− 2xypxpy
)

+mg(
√
l2 − x2 − y2 − l). (12)

At this point, it is convenient to apply a symplectic scaling in order to adimensionalize the Hamilto-
nian. We apply the following symplectic transformation:

x = ξ√
mν

px = pξ
√
mν

y = η√
mν

py = pη
√
mν

, (13)

where ν =
√
g/l. In these local symplectic coordinates near the unstable equilibrium of the spherical

pendulum, the symplecit form is rewritten as ω = dξ ∧ dpξ + dη ∧ dpη and the Hamiltonian becomes:

H = ν

(
1

2
(p2
ξ + p2

η)− κ

2
(ξpξ + ηpη)2 +

1

κ
(
√

1− κρ2 − 1)

)
, (14)

where ρ2 = ξ2 + η2, ν2 = g/l and 1/κ = ml2ν = mgl/ν and they are all constants.
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Finally, a last symplectic transformation reveals that the Williamson normal form at the unstable
equilibrium of the spherical pendulum corresponds to the focus-focus singularity. It is the following:

√
2ξ = q1 − p1,

√
2pξ = q1 + p1,

√
2η = q2 − p2,

√
2pη = q2 + p2 . (15)

In these coordinates, where ω = dp1 ∧ dq1 + dp2 ∧ dq2, the Hamiltonian is:

H = ν

(
p1q1 + p2q2 − κ

1

8
(q2 − p2)2 +

1

κ

√
1− κρ2 +

ρ2

2
− 1

κ

)
, (16)

where q2 = q2
1 + q2

2 , p2 = p2
1 + p2

2 and ρ2 = p2/2 + q2/2− (p1q1 + p2q2).
Observe that the quadratic part of the potential has been absorbed in the terms H ′ = ν(p1q2 + p2q2)

and that the remaining terms of the potential are of order 4 and higher. The quadratic part of H is
simply H ′ and the angular momentum in the p, q variables is L = q1p2−q2p1. So, the system F = (H ′, L)
has a singularity of focus-focus type.

Exercise 1.9. Compute the infinitesimal generator of the cotangent lift of the action given by:

ρ : (S1 × R)× R2 −→ R2

((θ, t),

(
x1

x2

)
) 7−→ ρθ,t

(
x1

x2

)
= e−t

(
cos θ sin θ
− sin θ cos θ

)(
x1

x2

)
,

and see that it coincides with the vector field associated to the normal form of the focus-focus singularity.

Solution: To describe the basic singularity of focus-focus type in a manifold of dimension 4 we take
coordinates (x1, x2, y1, y2). The symplectic form is ω = dx1 ∧ dy1 + dx2 ∧ dy2 and the moment map
associated to this singularity is F = (f1, f2) = (x1y2 − x2y1, x1y1 + x2y2).

If we compute the Hamiltonian vector field associated to f1 and f2, we obtain

X1 =− ∂f1

∂y1

(
∂

∂x1

)
− ∂f1

∂y2

(
∂

∂x2

)
+
∂f1

∂x1

(
∂

∂y1

)
+
∂f1

∂x2

(
∂

∂y2

)
= (17)

=x2
∂

∂x1
− x1

∂

∂x2
+ y2

∂

∂y1
− y1

∂

∂y2
= (x2,−x1, y2,−y1), (18)

and

X2 =− ∂f2

∂y1

(
∂

∂x1

)
− ∂f2

∂y2

(
∂

∂x2

)
+
∂f2

∂x1

(
∂

∂y1

)
+
∂f2

∂x2

(
∂

∂y2

)
= (19)

=− x1
∂

∂x1
− x2

∂

∂x2
+ y1

∂

∂y1
+ y2

∂

∂y2
= (−x1,−x2, y1, y2). (20)

Now consider the action of a rotation and a radial dilation on R2 given by:

ρ : (S1 × R)× R2 −→ R2

((θ, t),

(
x1

x2

)
) 7−→ ρθ,t

(
x1

x2

)
= e−t

(
cos θ sin θ
− sin θ cos θ

)(
x1

x2

)
.

The differential of the induced action ρθ,t at a point x = (x1, x2) is the following linear map:

dρθ,t : TxR2 −→ TxR2(
y1

y2

)
7−→ e−t

(
y1 cos θ + y2 sin θ
−y1 sin θ + y2 cos θ

)
.

Then, ((dρθ,t)
∗)−1 acts as: (

y1

y2

)
7−→ et

(
cos θ sin θ
− sin θ cos θ

)(
y1

y2

)
.
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And the cotangent lift ρ̂θ,t associated to the group action ρθ,t is:

ρ̂θ,t : T ∗R2 −→ T ∗R2
x1

x2

y1

y2

 7−→


e−t(x1 cos θ + x2 sin θ)
e−t(−x1 sin θ + x2 cos θ)
et(y1 cos θ + y2 sin θ)
et(−y1 sin θ + y2 cos θ)

 .

Finally, deriving the last vector with respect to θ and evaluating at 0 and deriving the vector with re-
spect to t and evaluating at 0 we obtain, respectively, X1 = (x2,−x1, y2,−y1) andX2 = (−x1,−x2, y1, y2),
the vector fields associated with f1 and f2, the components of the moment map of the focus-focus singu-
larity.
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