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The problems of this course mainly follow the articles by Victor Guillemin, Eva Miranda, Ana Rita
Pires, Geoffrey Scott, Jonathan Weitsman and others. We would refer the reader to [GMP11], [GMP14],
[GMPS15], [GMPS17], [GMW18b], [GMW18a], [GMW19], [GMW21] and [KMS16] to cite a few places
to check the basics and not-so-basics of b-symplectic geometry.

1 Problem session 1. Introduction to symplectic geometry, b-
symplectic geometry, Poisson manifolds, b-forms, the path
method

Exercise 1.1. Check that the Circular Planar Restricted 3 Body Problem provides a b3-symplectic struc-
ture. To do this, consider the symplectic form on T ∗R2 in polar coordinates,

ω = dr ∧ dPr + dα ∧ dPα,

and apply to it the non-canonical McGehee change of coordinates, given by r = 2
x2 , but without altering

the momentum associated to r.

Solution: The discussion that follows is extracted from Section 2.1 in [DKdlRS19].
Recall that, after the change to polar coordinates, the Hamiltonian associated to the restricted circular

three body problem is

H(r, α, Pr, Pα) =
P 2
r

2
+
P 2
α

2r2
− U(r cosα, r sinα).

Under the new coordinates, the Hamiltonian has the expression

H(x, α, Pr, Pα) =
P 2
r

2
+
x4Pα

8
− U

(
2 cosα

x2
,

2 sinα

x2

)
.

Furthermore, if we consider that r = 2
x2 , then dr = − 4

x3 dx, and this means that

ω = − 4

x3
dx ∧ dPr + dα ∧ dPα.

Thus, the non-canonical change of coordinates transforms the symplectic form into a b3-symplectic
form. The resulting dynamical system is nevertheless well defined, and provides information about the
original problem.

Moreover, modeling this problem has the added benefit of providing a description of the dynamics
within the critical set Z = {x = 0}. Granted, the dynamics within of Z carry no physical meaning, but
their interplay with the dynamics outside and close to them (and, even more interesting, towards them)
is a way to study the behaviour of the escape orbits in this context.

Exercise 1.2. Let Z = {z1, ..., zk} ⊂ S1 a finite collection of points within the circle. If we consider
(S1, Z) as a b-manifold, is it true that TS1 ∼= bTS1? This means, are the vector bundles isomorphic?
Does this depend on the number of points k?

Solution: First of all, let us recall Serre-Swan’s Theorem, which is our tool to define the bk-tangent
bundles of a given manifold:

Theorem ([Swa62]): A C∞(M)-module P is isomorphic to the module of sections of a vector bundle
E (denoted as Γ(E)) if and only if P is finitely generated and projective.

In our case, the module of bk-vector fields, locally expressible as
〈
xk1

∂
∂x1

, ∂
∂x2

, ..., ∂
∂xn

〉
C∞(M)

, always

satisfies these conditions. However, this does not provide a characterization of the constructed vector
bundle. All the information that we may obtain may come, then, from the study of the set of bk-vector
fields itself.

In our particular case, we know that TS1 is trivial, so that TS1 ∼= S1×R. In the language of sections,
we know that its module of sections is freely generated, and thus X(S1) = 〈1〉C∞(S1)

∼= C∞(S1).

This means that, in order to answer the question of whether bTS1 is isomorphic to TS1 or not, we
can simply study the generators of the module of sections of bX(S1).

Let us assume that bTS1 is isomorphic to TS1 and therefore trivial. Then, we may pick a single
generatorX ∈ bX(S1). Seen as a section of bTS1 it cannot vanish anywhere, which, in our one-dimensional
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case, means thatX vanishes precisely at Z = {z1, ..., zk}, and that it vanishes transversally at these points.
It can be seen that this means that X must change sign at each point of Z. Notice that bTS1 has rank
1, so the section X can be regarded as a smooth function X : S1 → R.

Let us look at the sign of X in M\Z. Let I1, ..., Ik the connected components of M\Z. By our
observations in the last paragraph, the sign of X must differ in adjacent components.

This solves the exercise:

a) If k is even, then we can construct such a section, and bTS1 is parallelizable, and thus isomorphic
to TS1.

For instance, if we take z1 = 0 and z2 = π (thinking of S1 ∼= [0, 2π]/{0 = 2π}), the section cos z
generates bTS1.

b) If k is odd, then we reach a contradiction: it is not possible to find a single global generator of
bX(S1), so the b-tangent bundle cannot be parallelizable (actually, it is not even orientable!).

Exercise 1.3. Consider M = T2 the 2-torus. Let Z1, Z2 be two disjoint non-contractible circles embedded
in M as in the picture:

MZ1

Z2

Does the b-manifold (M,Z1) admit a b-symplectic structure? Does (M,Z1 ∪ Z2)?
Hint: Use the results of the last exercise.

Solution:

1. The b-manifold (M,Z1) does not admit a b-symplectic structure, because, as we saw in the last
exercise, its b-tangent bundle is not orientable.

2. The b-tangent bundle of (M,Z1 ∪ Z2) is isomorphic to TT2, and thus parallelizable. This means
that it is orientable, so we may take any area b−form to be the b-symplectic form.

Exercise 1.4. Let (M,ω) be a symplectic manifold and let Π be the corresponding bivector (that is,
ω(Xf , Xg) = {f, g} = ιXf

(dg) = Π(df, dg) for any smooth functions f, g). Suppose ω is locally given as

ω =
∑
i<j

ωijdxi ∧ dxj .

Prove that the coefficients of Π satisfy πi<j = (ωij)
−1.

Proof. Consider the vector bundle homomorphism

π# : T ∗M −→ TM
α 7−→ π#(α)

,

with π# satisfying 〈β, (π#(α))〉 = Π(α, β) for any α, β 1-forms.
This map is the inverse of the map

ω# : TM −→ T ∗M
X 7−→ −ιXω

,

which satisfies
〈ω#(X), Y 〉 = −〈ιXω, Y 〉 = ω(Y,X)

Take α and β 1-forms and X,Y vector fields in M such that ιXω = α and ιY ω = β. Then, we have
that

ω(X,Y ) = ω((ω#)−1(ιXω), (ω#)−1(ιY ω)) = ω((ω#)−1(α), (ω#)−1(β)) = Π(α, β).
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On the other hand,

Π(α, β) = −Π(β, α) = −〈α, π#(β)〉 = −〈ιXω, π#(ιY ω)〉 = ω(X,π#(ιY ω)) = ω(X,π#(ω#(Y ))).

Then,
ω(X,π#(ω#(Y ))) = ω(X,Y ),

and by the non-degeneracy of ω, it follows that (π#)−1 = ω#, and πij = (ωij)
−1 for the coefficients.

Exercise 1.5. Prove that the cubic polynomial g(x) = x(x − 1)(x − t), 0 < t < 1, defines a Poisson
structure on R2 given by

Π = (g(x)− y2)
∂

∂x
∧ ∂

∂y
.

Check that it extends smoothly to a b-symplectic structure on RP 2 with critical set Z given by the real
elliptic curve y2 = g(x). [GL14]

Proof. In order to check that Π defines a Poisson structure, one has to see that [Π,Π] = 0, which in this
case is inmediate because [Π,Π] would be a trivector field and they are all 0 in R2. In fact, any bivector
Π = f(x, y) ∂

∂x ∧
∂
∂y , with f smooth, defines a Poisson structure in R2.

We observe that the Poisson bracket of the coordinates {x, y} = πxy is defined as {g(x) − y2 =

x(x− 1)(x− t)− y2}. And we see that Π defines a b-symplectic structure, because ω = (πxy)
−1
dx∧dy =

1
g(x)−y2 dx∧ dy, which the factor g(x)− y2 precisely vanishing on Z = {y2 = g(x)}, which is made of two

connected components D0 and D1 as in the picture.

D1 D0

The critical set has two connected components: D0, containing {(0, 0), (t, 0)} and with trivial normal
bundle, and D1, containing {(1, 0), (∞, 0)} and with nontrivial normal bundle.

Exercise 1.6. Prove that S4 does not admit a b-symplectic structure.

Proof. Let us recall the Marcut-Osorno theorem ([MT14]):
Theorem: Let (M2n, Z, ω) a compact b-symplectic manifold. Then, there exists an element c ∈

H2(M) such that cn−1 6= 0.
In this case, n = 2, so the condition is just that there is some non-vanishing element c ∈ H2(S4).

However, H2(S4) = 0, so such an element cannot exist, which shows that S4 cannot admit a b-symplectic
structure.

Exercise 1.7. Prove the following result from [Cav17]. If a compact oriented manifold M2n, with n > 1,
admits a b-symplectic structure, then there are classes a, b ∈ H2(M ;R) such that an−1b 6= 0 and b2 = 0.

Proof. Suppose that M has a b-symplectic structure with a non-empty singular set Z. Then, we may
assume that the b-symplectic structure is proper, this means that Z is a symplectic fibration over the
circle with fiber (F, ω), a 2(n − 1)-dimensional symplectic manifold. On the one hand, due to Marcut–
Osorno-Torres’s Theorem there is a globally defined closed 2-form ω̃ ∈ Ω2(M) which restricts to the
symplectic form on F . Let a = [ω̃].

As (F, ω̃) is symplectic, the pairing of [F ] ∈ H2n−2(M) with an−1 ∈ H2n−2(M) is nonzero.
Let b ∈ H2(M) be the Poincaré dual of [F ]. As F appears as a fiber of a fibration, we conclude that

b2 = 0. Moreover, by definition of Poincaré dual,

〈an−1b, [M ]〉 = 〈an−1, F 〉 6= 0.
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Exercise 1.8. Prove the following corollaries

1. An orientable, compact, b-symplectic manifold M of dimension 2n has b2i(M) ≥ 2 for 0 < i < n.

Proof. It follows directly from the relations an−1b 6= 0 and b2 = 0 that the classes ai and ai−1b are
linearly independent for 0 < i < n.

2. For n > 1, CPn has no b-symplectic structure and, for n > 2, the blow-up of CPn along a symplectic
submanifold of real codimension greater than 4 also does not carry b-symplectic structures.

Proof. The only generator η ∈ H2(CPn) satisfies that ηk 6= 0 for all 0 ≤ k ≤ n. Rephrasing, there
exists no element b ∈ H2(CPn) such that b2 = 0.

Exercise 1.9. Compute the b-cohomology class of the b-torus of Radko with 2n connected components

Solution: Recall that the b-cohomology of the b-manifold (M,Z) is given by

bHk(M) ∼=
{
H0(M) for k = 0
Hk(M)⊕Hk−1(Z) for 0 < k ≤ n .

The b-torus of Radko is (T2, Z), a 2-torus where Z is the union of 2n disjoint non-contractible circles.
From this we deduce that

Hk(T2) ∼=

 R for k = 0, 2
R2 for k = 1
0 for k > 2

, Hk(Z) ∼=
{

R2n for k = 0, 1
0 for k ≥ 2

.

Applying the formula,

bHk(T2) ∼=


R for k = 0
R2(n+1) for k = 1
R2n+1 for k = 2
0 for k > 2

.

Exercise 1.10. Let (R, πR) be a Radko compact surface and (S, πS) be a compact symplectic surface.
Show that (R× S, πR + πS) is a b-Poisson manifold of dimension 4.

Proof. We have to check first that [πR + πS , πR + πS ] = 0.

[πR + πS , πR + πS ] = [πR, πR] + [πR, πS ] + [πS , πR] + [πS , πS ] (1)

= 0 + [πR, πS ] + [πS , πR] + 0 (2)

= 2 · [πR, πS ], (3)

because πR and πS are proper Poisson structures and, hence, [πR, πR] = [πS , πS ] = 0.
Since πR is defined on the Radko surface and πS on the sphere, it is clear that [πR, πS ] = [πS , πR] = 0.

It can be checked either putting any charts on R and R and working in coordinates or considering
bivector fields as bi-derivations which naturally commute since they act on each component of the product
manifold.

To check transversality, we compute (πR + πS) ∧ (πR + πS).

(πR + πS) ∧ (πR + πS) = πR ∧ πR + πR ∧ πS + πS ∧ πR + πS ∧ πS (4)

= 0 + πR ∧ πS + πS ∧ πR + 0 (5)

= 2πR ∧ πS , (6)

Since πR is a b-Poisson structure, it is transverse to the zero section (in R). Then, πR∧πS is transverse
to the zero section (in R × S), because it inherits the same transversality to the product of the singular
locus in R with S.
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Exercise 1.11. Take S2 with the b-Poisson structure Π1 = h ∂
∂h ∧

∂
∂θ and the symplectic torus T2 with

dual Poisson structure Π2 = ∂
∂θ1
∧ ∂
∂θ2

. Prove that

Π̂ = h
∂

∂h
∧ (

∂

∂θ
+

∂

∂θ1
) + Π2

is a b-Poisson structure on S2 × T2.

Proof. We first check that the Schouten bracket [Π̂, Π̂] is zero.

[Π̂, Π̂] =[h
∂

∂h
∧ (

∂

∂θ
+

∂

∂θ1
) + Π2, h

∂

∂h
∧ (

∂

∂θ
+

∂

∂θ1
) + Π2] (7)

=2 · [h ∂

∂h
∧ (

∂

∂θ
+

∂

∂θ1
),Π2] (8)

=2 · [h ∂

∂h
∧ (

∂

∂θ
+

∂

∂θ1
),

∂

∂θ1
∧ ∂

∂θ2
] (9)

=2 · [h ∂

∂h
∧ ∂

∂θ
,
∂

∂θ1
∧ ∂

∂θ2
] + 2 · [h ∂

∂h
∧ ∂

∂θ1
,
∂

∂θ1
∧ ∂

∂θ2
] (10)

=2 · [Π1,Π2] + 2 · [h ∂

∂h
∧ ∂

∂θ1
,
∂

∂θ1
∧ ∂

∂θ2
] (11)

=0 + 2 · [h ∂

∂h
∧ ∂

∂θ1
,
∂

∂θ1
∧ ∂

∂θ2
] (12)

=2 ·
(

+ [h
∂

∂h
,
∂

∂θ1
] ∧ ∂

∂θ1
∧ ∂

∂θ2
− [h

∂

∂h
,
∂

∂θ2
] ∧ ∂

∂θ1
∧ ∂

∂θ1
(13)

− [
∂

∂θ1
,
∂

∂θ1
] ∧ h ∂

∂h
∧ ∂

∂θ2
+ [

∂

∂θ1
,
∂

∂θ2
] ∧ h ∂

∂h
∧ ∂

∂θ1

)
(14)

=2 ·
(

+ 0− 0− 0 + 0
)

= 0 (15)

Now, we have to see that Π̂ ∧ Π̂ is transverse to the zero section.

Π̂ ∧ Π̂ =(h
∂

∂h
∧ (

∂

∂θ
+

∂

∂θ1
) + Π2) ∧ (h

∂

∂h
∧ (

∂

∂θ
+

∂

∂θ1
) + Π2) (16)

=2 · (h ∂

∂h
∧ (

∂

∂θ
+

∂

∂θ1
) ∧Π2) (17)

=2 · (h ∂

∂h
∧ (

∂

∂θ
+

∂

∂θ1
) ∧ ∂

∂θ1
∧ ∂

∂θ2
) (18)

=2 · (h ∂

∂h
∧ ∂

∂θ
∧ ∂

∂θ1
∧ ∂

∂θ2
), (19)

which is clearly transverse to the zero section, since 0 is a regular value of the function h.

Exercise 1.12. Let (N2n+1, π) be a regular corank-1 Poisson manifold, X be a Poisson vector field and
f : S1 → R a smooth function. Prove that the bivector field

Π = f(θ)
∂

∂θ
∧X + π

is a b-Poisson structure on S1×N if the function f vanishes linearly and the vector field X is transverse
to the symplectic leaves of N .
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Proof. First, we compute [Π,Π].

[Π,Π] =[f(θ)
∂

∂θ
∧X + π, f(θ)

∂

∂θ
∧X + π] (20)

=[f(θ)
∂

∂θ
∧X, f(θ)

∂

∂θ
∧X] + 2 · [f(θ)

∂

∂θ
∧X,π] (21)

=2 · [f(θ)
∂

∂θ
,X] ∧ f(θ)

∂

∂θ
∧X + 2 · [f(θ)

∂

∂θ
∧X,π] (22)

=0 + 2 · [f(θ)
∂

∂θ
∧X,π] (23)

=2 · f(θ)
∂

∂θ
∧ [X,π] + 2 · [f(θ)

∂

∂θ
, π] ∧X (24)

=0 + 0 = 0 (25)

Now, since X is transverse to the symplectic leaves of N , we have that X∧π 6= 0 (it is non degenerate).
And since the expression ∧n+1Π = f(θ) ∂∂θ∧X∧π

n only vanishes transversally when f(θ) vanishes linearly,
we also need this condition.

Exercise 1.13. Prove that the bracket {f, g} = ω(Xf , Xg) for f, g ∈ C∞ defines a Poisson structure on
a symplectic manifold (M2n, ω). Hint: To check the Jacobi identity, expand dω(Xf , Xg, Xh).

Proof. A Poisson manifoldM is a differentiable manifold equipped with a Lie algebra structure on C∞(M)
defined by a Poisson Bracket

{·, ·} : C∞(M)× C∞(M) −→ C∞(M),

which satisfies, for any f, g, h ∈ C∞(M) the following properties:

• Bi-linearity : {·, ·} is a real-bilinear map.

• Anti-symmetry {f, g} = −{g, f} .

• Leibniz rule {f, gh} = g {f, h} + h{f, g} .

• Jacobi identity {{f, g}, h} + {{g, h}, f} + {{h, f}, g} = 0 .

To prove that {f, g} = ω(Xf , Xg) defines a Poisson structure on (M2n, ω), we have to check the four
properties.

By the bi-linearity of 2-forms, {f, g} = ω(Xf , Xg) is bi-linear. Also, since ω is an anti-symmetric
2-form, we have that

{f, g} = ω(Xf , Xg) = −ω(Xg, Xf ) = −{g, f}.
To prove Leibniz Rule, observe that {f, g} = ω(Xf , Xg) = Xf (g) = dg(Xf ).
Hence,

{f, gh} = Xf (gh) = d(gh)(Xf ) = (gdh+ hdg)(Xf ) = gdh(Xf ) + hdg(Xf ) = g{f, h}+ h{f, g}.

Finally, to prove Jacobi identity, recall that if ω ∈ Ωk(M), then dω ∈ Ωk+1(M) and:

dω(X0, . . . , Xk) =

k∑
i=0

(−1)iXiω(X0, . . . , Xi−1, Xi+1, . . . , Xk)+ (26)

+
∑
i<j

(−1)i+jω([Xi, Xj ], X0, . . . , Xi−1, Xi+1, . . . , Xj−1, Xj+1, . . . , Xk) (27)

Hence:

dω(Xf , Xg, Xh) = (28)

=Xfω(Xg, Xh)−Xgω(Xf , Xh) +Xhω(Xf , Xg)− (29)

− ω([Xf , Xg], Xh) + ω([Xf , Xh], Xg)− ω([Xg, Xh], Xf ) = (30)

={f, {g, h}} − {g, {f, h}}+ {h, {f, g}}− (31)

− {{f, g}, h}+ {{f, h}, g} − {{g, h}, f} = (32)

=2 ({f, {g, h}}+ {g, {h, f}}+ {h, {f, g}}) (33)

Since dω = 0, {f, {g, h}}+ {g, {h, f}}+ {h, {f, g}} = 0.
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