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The restricted 3-body problem
Simplified version of the general 3-body problem. One of the bodies has negligible
mass.
The other two bodies move independently of it following Kepler’s laws for the
2-body problem.

Figure: Circular 3-body problem
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The Symplectic/Contact mirror ”reloaded”

Miranda (UPC) b-symplectic manifolds September 7, 2021 3 / 35



b-forms

A vector field v is a b-vector field if vp ∈ TpZ for all p ∈ Z. The b-tangent
bundle bTM is defined by

Γ(U, bTM) =
{

b-vector fields
on (U,U ∩ Z)

}

The b-cotangent bundle bT ∗M is (bTM)∗. Sections of Λp(bT ∗M) are
b-forms, bΩp(M).The standard differential extends to

d : bΩp(M)→ bΩp+1(M)

We can introduce b-contact structures on a manifold M2n+1 as b-forms of
degree 1 for which α ∧ (dα)n 6= 0.
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Attacking the bm-Weinstein’s conjecture

Theorem (M-Oms)
Let (M,α) be a 3-dimensional bm-contact manifold and assume the critical
hypersurface Z to be closed. Then there exists infinitely many periodic Reeb
orbits on Z.

Proof.
1 α = u dzzm + β

2 The restriction on Z of the 2-form Θ = udβ + β ∧ du is symplectic and the
Reeb vector field is Hamiltonian.

3 u is non-constant on Z.
4 Rα is Hamiltonian on Z for −u,
5 u−1(p) where p regular is a circle,
6 Rα periodic on u−1(p).
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New families of periodic orbits

Contact geometry of RPC3BP revisited
In rotating coordinates: H(q, p) = |p|2

2 −
1−µ
|q−qE | + µ

|q−qM | + p1q2 − p2q1

Symplectic polar coordinates: (r, α, Pr, Pα).
McGehee change of coordinates: r = 2

x2 .

b3-symplectic form: −4dxx3 ∧ dPr + dα ∧ dPα.

Theorem
After the McGehee change, the Liouville vector field Y = p ∂

∂p is a b3-vector field
that is everywhere transverse to Σc for c > 0 and the level-sets (Σc, ιY ω) for
c > 0 are b3-contact manifolds. The critical set is a cylinder and the Reeb vector
field admits infinitely many non-trivial periodic orbits on the critical set.
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New families of periodic orbits

Proof.
On the critical set, Hamiltonian H = 1

2P
2
r − Pα, so that

Y (H) = P 2
r − Pα = 1

2
P 2

r

2 + c > 0;
b3-contact form α = (Pr dxx3 + Pαdα)|H=c with
Z = {(x, α, Pr, Pα)|x = 0, 1

2P
2
r − Pα = c};

Rα|Z = XPr and the cylinder is foliated by periodic orbits.
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The singular Weinstein conjecture re-loaded

A true singular Weinstein structures should also admit singular orbits as below:

γ2

γ1

Or,

Singular Weinstein conjecture
Let (M,α) be a compact b-contact manifold with critical hypersurface Z. Then
there exists always a Reeb orbit γ : R→M \ Z such that
limt→±∞ γ(t) = p± ∈ Z and Rα(p±) = 0 (singular periodic orbit).
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Incompressible fluids on Riemannian manifolds

Classical Euler equations on R3 :{
∂X

∂t
+ (X · ∇)X = −∇P

divX = 0

The evolution of an inviscid and incompressible fluid flow on a Riemannian
n-dimensional manifold (M, g) is described by the Euler equations:

∂X

∂t
+∇XX = −∇P , X = 0

X is the velocity field of the fluid: a non-autonomous vector field on M .
P is the inner pressure of the fluid: a time-dependent scalar function on M .
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Incompressible fluids on Riemannian manifolds
If X does not depend on time, it is a steady or stationary Euler flow: it models a
fluid flow in equilibrium. The equations can be written as:

∇XX = −∇P , X = 0 ,

⇐⇒ iXdα = −dB , dιXµ = 0 , α(·) := g(X, ·)
where B := P + 1

2 ||X||
2 is the Bernoulli function.

Beltrami fields:
curlX = fX, with f ∈ C∞(M) X = 0.

Example (Hopf fields on S3 and ABC fields on T 3)
The Hopf fields u1 = (−y, x, ξ,−z) and u2 = (−y, x,−ξ, z) are Beltrami
fields on S3.
The ABC flows
(ẋ, ẏ, ż) = (A sin z + C cos y,B sin x+A cos z, C sin y +B cosx),
((x, y, z) ∈ (R/2πZ)3) are Beltrami.
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The Hopf fibration as a Reeb flow
S3 := {(u, v) ∈ C2 | |u|2 + |v|2 = 1}, α = 1

2(udu− udu+ vdv − vdv) .
The orbits of the Reeb vector field form the Hopf fibration! Why?

Rα = iu
∂

∂u
− iu ∂

∂u
+ iv

∂

∂v
− iv ∂

∂v

Figure: Pictures by Niles Johnson
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Déja vu?
S3 = {(z1, z2) ∈ C2 : |z1|2 + |z2|2 = 1} can be endowed with Hopf coordinates
(z1, z2) = (cos s exp iφ1, sin s exp iφ2), s ∈ [0, π/2], φ1,2 ∈ [0, 2π). The Hopf field
R := ∂φ1 + ∂φ2 is a steady Euler flow (Beltrami) with respect to the round metric.
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The magic mirror

In terms of α = ιXg and µ (volume form) the stationary Euler equations read{
ιXdα = −dB
dιXµ = 0

Etnyre-Ghrist:
{Rotational non singular Beltrami v.f.}� {Reeb v.f. reparametrized}
With Cardona and Peralta-Salas we have extended this picture to manifolds
with cylindrical ends to get singular contact structures.
CMPP: The Beltrami/contact correspondence works in higher dimensions.
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Let’s prove it!

The Beltrami equation ! dα = fιXµ . Since f > 0 and X does not vanish
 α ∧ dα = fα ∧ ιXµ > 0.
X satisfies ιX(dα) = ιXιXµ = 0 so X ∈ ker dα! it is a reparametrization
of the Reeb vector field by the function α(X) = g(X,X).
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A magic mirror

Weinstein conjecture for Reeb
vector fields  periodic orbits for
Beltrami vector fields
Uhlenbeck’s genericity properties of
eigenfunctions of Laplacian  
existence of singular periodic
orbits (M-Oms-Peralta)
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Escape orbits and Singular orbits

Singular periodic orbits are a particular case of escape orbits γ, γ ⊂M \ Z such
that limt→∞ γ(t) = p where p is an equilibrium point in Z (respectively
limt→−∞ γ(t) = p).

Z

γ

Figure: Singular periodic orbit vs. Escape orbits (in green)
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A magic mirror
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b-Beltrami vector fields to the rescue

b-Beltrami vector field X curlX = λX

Theorem (Cardona-M.-Peralta-Salas)

Any rotational Beltrami field non-vanishing as a section of bTM on M is a Reeb
vector field (up to rescaling) for some b-contact form on M .
Given a b-contact form α with Reeb vector field X then any nonzero rescaling of X
is a rotational Beltrami field for some b-metric and b-volume form on M .

Practical tip
X is a Beltrami vector field on (M, g) ! the Reeb vector field associated to the
b-contact form α = g(X, ·) is given by 1

‖X‖2X.
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True inspiration comes in a hat...

For regular Beltrami fields, there cannot exist surfaces invariant by Hamiltonian
vector fields. However for singular vector fields....
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We need a super(wo)man

Miranda (UPC) b-symplectic manifolds September 7, 2021 19 / 35



Escape orbits and Singular orbits

Exact b-metric ! Melrose b-contact forms:

g = dz2

z2 + π∗h (1)

with h Riemannian metric on Z.

Theorem (M-Oms-Peralta, ”lockdown theorem”)
There exists at least 2 + b1(Z) escape orbits for Reeb vector fields of generic Melrose
b-contact forms on (M,Z).

Proof: The Beltrami equation  the Hamil-
tonian function associated to (R,Z) is an
eigenfunction of the induced Laplacian on Z
 (Uhlenbeck) generically Morse and non-
zero critical values.
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A garden of singular orbits
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A garden of singular orbits

Z1

Z2

γ1

Z3

Z4

γ2

γ3

Figure: Different types of escape and singular periodic orbits: γ1 is a generalized singular
periodic orbit, γ2, γ3 are singular periodic orbits
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Generalized singular periodic orbits

Definition
An orbit γ : R →M \ Z of a b-Beltrami field X is a generalized singular periodic orbit if
there exist t1 < t2 < · · · < tk →∞ such that γ(tk)→ p+ ∈ Z and
t−1 > t−2 > · · · > t−k → −∞ such that γ(t−k)→ p− ∈ Z, as k →∞.

p+ and p− may be contained in different components and are not necessarily zeros of X.

This includes oscillatory motions:orbits (q(t), p(t)) in the phase space T ∗Rn such that
lim supt→±∞ ‖q(t)‖ =∞ and lim inft→±∞ ‖q(t)‖ <∞.
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A more symmetric case

For g = dz2

z2 + dx2 + dy2, we can prove more.

Theorem (M-Oms-Peralta Salas)
When g is semi-locally as above and X a generic asymptotically symmetric
b-Beltrami vector field, X has a generalized singular periodic orbit. Moreover, it
has a singular periodic orbit or at least 4 escape orbits.

In the case of (T3, α = C cos ydx+B sin xdy + (C sin y +B cosx) dz
sin z ) for

|B| 6= |C|, the singular Weinstein conjecture is satisfied.
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What about the restricted three body problem?
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Final questions

Can we prove existence of singular Weinstein orbits for generic b-contact
forms?
Extend the apparatus of variational calculus to extend the action functional
to this set-up.

Aα(γ) =
∫
γ

α

Find higher dimensional applications to celestial mechanics (for instance,
escape orbits 5-body problem).
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(Singular) symplectic manifolds

bm -Symplectic

Symplectic

Folded symplectic
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Obstruction theory via cohomology

Theorem (Guillemin-M-Pires)
For a compact b-symplectic manifold (M,Z) we have H1(Z) 6= {0} and
consequently bH2(M) 6= {0}.

Theorem (Guillemin-M-Pires)
For a compact b-symplectic manifold (M,Z) we have H2(Z) 6= {0} and
consequently bH3(M) 6= {0}.
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Obstruction theory via cohomology

Theorem (Marcut-Osorno, and Oms)
Let (M2n, ω) be an orientable b-symplectic manifold with compact critical hypersurface
Z, then there exists an element c ∈ H2(M) such that cn−1 6= 0.

Theorem (Cavalcanti)
If a compact oriented manifold M2n , with n > 1, admits a b-symplectic structure then
there are classes a, b ∈ H2(M,R) such that an−1b 6= 0 and b2 = 0.
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Déjà-vu...

Symplectic
manifolds

• Darboux theorem
• Delzant and 

convexity theorems
• Action-Angle

coordinates

b-Symplectic
manifolds

• Darboux theorem
• Delzant and 

convexity theorems
• Action-Angle

theorem

Folded symplectic
manifolds

• Darboux theorem
(Martinet)

• Delzant-type
theorems (Cannas da 
Silva-Guillemin-Pires)

• Action-agle theorem
(M-Cardona)
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Examples

Orientable 
Surface

• Is symplectic
• Is folded

symplectic
• (orientable 

or not) is b-
symplectic

CP2

• Is symplectic
• Is folded

symplectic
• Is not b-

symplectic

S4

• Is not
symplectic

• Is not b-
symplectic

• Is folded-
symplectic

Miranda (UPC) b-symplectic manifolds September 7, 2021 31 / 35



Liouville torus and integrable systems

KAM theory  ”some” of the Liouville torus survive under perturbations of the
integrable system.
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b-surfaces and their moment map

A toric b-surface is defined by a smooth map f : S −→ bR or f : S −→ bS1 (a
posteriori the moment map).
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A picture done by a student of this class
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A b-Delzant theorem

µ = log |h|
µ

Guillemin-M.-Pires-Scott
There is a one-to-one correspondence between b-toric manifolds and b-Delzant polytopes.
Toric b-manifolds are either:

bT2 ×X (X a toric symplectic manifold of dimension (2n− 2)).
obtained from bS2 ×X via symplectic cutting.
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Periodic orbits and applications

Figure: Circular 3-body problem
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