Geometry and Dynamics of Singular Symplectic manifolds

Eva Miranda

UPC & CRM & Observatoire de Paris

Henan University, Day 8 https:

//web.mat.upc.edu/eva.miranda/coursHenan.htm

The restricted 3-body problem

- Simplified version of the general 3-body problem. One of the bodies has negligible mass.
- The other two bodies move independently of it following Kepler's laws for the 2-body problem.

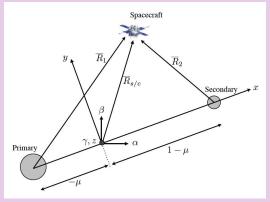
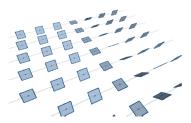


Figure: Circular 3-body problem

The Symplectic/Contact mirror "reloaded"



Symplectic	Contact
$\dim M = 2n$	$\dim M = 2n + 1$
2-form ω , non-degenerate $d\omega=0$	1-form α , $\alpha \wedge (d\alpha)^n \neq 0$
Hamiltonian $\iota_{X_H}\omega = -dH$	Reeb $\alpha(R)=1$, $\iota_R d\alpha=0$
	$\text{Ham. } \begin{cases} \iota_{X_H}\alpha = H \\ \iota_{X_H}d\alpha = -dH + R(H)\alpha. \end{cases}$

Miranda (UPC) b-symplectic manifolds September 7, 2021 3

• A vector field v is a b-vector field if $v_p \in T_pZ$ for all $p \in Z$. The b-tangent bundle bTM is defined by

$$\Gamma(U,{}^bTM) = \left\{ \begin{array}{l} \text{b-vector fields} \\ \text{on } (U,U\cap Z) \end{array} \right\}$$

• The b-cotangent bundle ${}^bT^*M$ is $({}^bTM)^*$. Sections of $\Lambda^p({}^bT^*M)$ are b-forms, ${}^b\Omega^p(M)$. The standard differential extends to

$$d: {}^b\Omega^p(M) \to {}^b\Omega^{p+1}(M)$$

• We can introduce *b*-contact structures on a manifold M^{2n+1} as *b*-forms of degree 1 for which $\alpha \wedge (d\alpha)^n \neq 0$.

Attacking the b^m -Weinstein's conjecture

Theorem (M-Oms)

Let (M,α) be a 3-dimensional b^m -contact manifold and assume the critical hypersurface Z to be closed. Then there exists infinitely many periodic Reeb orbits on Z.

Proof.

- ② The restriction on Z of the 2-form $\Theta=ud\beta+\beta\wedge du$ is symplectic and the Reeb vector field is Hamiltonian.
- $oldsymbol{3}$ u is non-constant on Z.
- $lacktriangledown R_{\alpha}$ is Hamiltonian on Z for -u,
- $u^{-1}(p)$ where p regular is a circle,
- **6** R_{α} periodic on $u^{-1}(p)$.

New families of periodic orbits

Contact geometry of RPC3BP revisited

In rotating coordinates: $H(q,p) = \frac{|p|^2}{2} - \frac{1-\mu}{|q-q_E|} + \frac{\mu}{|q-q_M|} + p_1q_2 - p_2q_1$

- Symplectic polar coordinates: $(r, \alpha, P_r, P_\alpha)$.
- McGehee change of coordinates: $r = \frac{2}{x^2}$.

 b^3 -symplectic form: $-4\frac{dx}{x^3} \wedge dP_r + d\alpha \wedge dP_\alpha$.

Theorem

After the McGehee change, the Liouville vector field $Y=p\frac{\partial}{\partial p}$ is a b^3 -vector field that is everywhere transverse to Σ_c for c>0 and the level-sets $(\Sigma_c, \iota_Y\omega)$ for c>0 are b^3 -contact manifolds. The critical set is a cylinder and the Reeb vector field admits infinitely many non-trivial periodic orbits on the critical set.

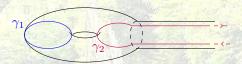
New families of periodic orbits

Proof.

- On the critical set, Hamiltonian $H=\frac{1}{2}P_r^2-P_{\alpha}$, so that $Y(H) = P_r^2 - P_{\alpha} = \frac{1}{2} \frac{P_r^2}{2} + c > 0$:
- b^3 -contact form $\alpha = (P_r \frac{dx}{d\alpha} + P_\alpha d\alpha)|_{H=c}$ with $Z = \{(x, \alpha, P_r, P_{\alpha}) | x = 0, \frac{1}{2}P_r^2 - P_{\alpha} = c\};$
- $R_{\alpha}|_{Z} = X_{P_{\alpha}}$ and the cylinder is foliated by periodic orbits.

The singular Weinstein conjecture re-loaded

A true singular Weinstein structures should also admit singular orbits as below:

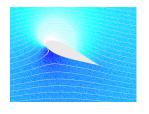


Or,

Singular Weinstein conjecture

Let (M,α) be a compact b-contact manifold with critical hypersurface Z. Then there exists always a Reeb orbit $\gamma: \mathbb{R} \to M \setminus Z$ such that $\lim_{t \to \pm \infty} \gamma(t) = p_{\pm} \in Z$ and $R_{\alpha}(p_{\pm}) = 0$ (singular periodic orbit).

Incompressible fluids on Riemannian manifolds



Classical Euler equations on \mathbb{R}^3 :

$$\begin{cases} \frac{\partial X}{\partial t} + (X \cdot \nabla)X = -\nabla P \\ \operatorname{div} X = 0 \end{cases}$$

The evolution of an inviscid and incompressible fluid flow on a Riemannian n-dimensional manifold (M,g) is described by the Euler equations:

$$\frac{\partial X}{\partial t} + \nabla_X X = -\nabla P, \qquad X = 0$$

- \bullet X is the velocity field of the fluid: a non-autonomous vector field on M.
- ullet P is the inner pressure of the fluid: a time-dependent scalar function on M.

Incompressible fluids on Riemannian manifolds

If X does not depend on time, it is a steady or stationary Euler flow: it models a fluid flow in equilibrium. The equations can be written as:

$$\nabla_X X = -\nabla P \,, \qquad X = 0 \,,$$

$$\iff i_X d\alpha = -dB, \qquad d\iota_X \mu = 0, \qquad \alpha(\cdot) := g(X, \cdot)$$

where $B:=P+\frac{1}{2}||X||^2$ is the Bernoulli function.

Beltrami fields:

$$\operatorname{curl} X = fX$$
, with $f \in C^{\infty}(M)$ $X = 0$.

Example (Hopf fields on S^3 and ABC fields on T^3)

- The Hopf fields $u_1=(-y,x,\xi,-z)$ and $u_2=(-y,x,-\xi,z)$ are Beltrami fields on S^3 .
- The ABC flows $(\dot{x},\dot{y},\dot{z}) = (A\sin z + C\cos y, B\sin x + A\cos z, C\sin y + B\cos x),$ $((x,y,z) \in (\mathbb{R}/2\pi\mathbb{Z})^3) \text{ are Beltrami.}$

10 / 35

The Hopf fibration as a Reeb flow

$$S^3 := \{(u,v) \in \mathbb{C}^2 \mid |u|^2 + |v|^2 = 1\}, \alpha = \frac{1}{2}(ud\overline{u} - \overline{u}du + vd\overline{v} - \overline{v}dv).$$

The orbits of the Reeb vector field form the Hopf fibration! Why?

$$R_{\alpha} = iu \frac{\partial}{\partial u} - i\overline{u} \frac{\partial}{\partial \overline{u}} + iv \frac{\partial}{\partial v} - i\overline{v} \frac{\partial}{\partial \overline{v}}$$

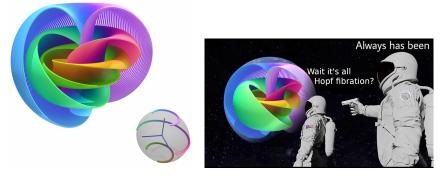
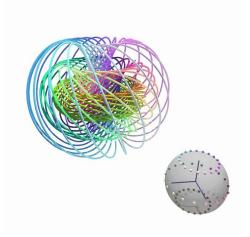


Figure: Pictures by Niles Johnson

Déja vu?

 $\begin{array}{l} \mathbb{S}^3=\{(z_1,z_2)\in\mathbb{C}^2:|z_1|^2+|z_2|^2=1\} \text{ can be endowed with Hopf coordinates}\\ (z_1,z_2)=(\cos s\exp i\phi_1,\sin s\exp i\phi_2),\ s\in[0,\pi/2],\ \phi_{1,2}\in[0,2\pi). \text{ The Hopf field}\\ R:=\partial_{\phi_1}+\partial_{\phi_2} \text{ is a steady Euler flow (Beltrami) with respect to the round metric.} \end{array}$



The magic mirror

In terms of $\alpha = \iota_X g$ and μ (volume form) the **stationary Euler equations** read

$$\begin{cases} \iota_X d\alpha = -dB \\ d\iota_X \mu = 0 \end{cases}$$

- With Cardona and Peralta-Salas we have extended this picture to manifolds with cylindrical ends to get singular contact structures.
- CMPP: The Beltrami/contact correspondence works in higher dimensions.

Let's prove it!

- The Beltrami equation $\longleftrightarrow d\alpha = f \iota_X \mu$. Since f > 0 and X does not vanish $\longleftrightarrow \alpha \wedge d\alpha = f \alpha \wedge \iota_X \mu > 0$.
- X satisfies $\iota_X(d\alpha) = \iota_X \iota_X \mu = 0$ so $X \in \ker d\alpha \iff$ it is a reparametrization of the Reeb vector field by the function $\alpha(X) = g(X, X)$.

A magic mirror

- Weinstein conjecture for Reeb vector fields \(\simple \) periodic orbits for Beltrami vector fields

Escape orbits and Singular orbits

Singular periodic orbits are a particular case of escape orbits $\gamma, \gamma \subset M \setminus Z$ such that $\lim_{t\to\infty} \gamma(t) = p$ where p is an equilibrium point in Z (respectively $\lim_{t\to-\infty}\gamma(t)=p).$

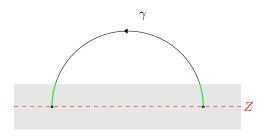


Figure: Singular periodic orbit vs. Escape orbits (in green)

A magic mirror

b-Beltrami vector fields to the rescue

b-Beltrami vector field $X \text{ curl} X = \lambda X$

Theorem (Cardona-M.-Peralta-Salas)

- Any rotational Beltrami field non-vanishing as a section of bTM on M is a Reeb vector field (up to rescaling) for some b-contact form on M.
- Given a b-contact form α with Reeb vector field X then any nonzero rescaling of X is a rotational Beltrami field for some b-metric and b-volume form on M.

Practical tip

X is a Beltrami vector field on $(M,g) \xrightarrow{}$ the Reeb vector field associated to the b-contact form $\alpha = g(X,\cdot)$ is given by $\frac{1}{\|X\|^2}X$.

True inspiration comes in a hat...

For regular Beltrami fields, there cannot exist surfaces invariant by Hamiltonian vector fields. However for singular vector fields....

We need a super(wo)man

Miranda (UPC)

Escape orbits and Singular orbits

Exact b-metric \longleftrightarrow Melrose b-contact forms:

$$g = \frac{dz^2}{z^2} + \pi^* h \tag{1}$$

with h Riemannian metric on Z.

Theorem (M-Oms-Peralta, "lockdown theorem")

There exists at least $2 + b_1(Z)$ escape orbits for Reeb vector fields of generic Melrose b-contact forms on (M, Z).

Proof: The Beltrami equation \leadsto the Hamiltonian function associated to (R,Z) is an eigenfunction of the induced Laplacian on Z \leadsto (Uhlenbeck) generically Morse and nonzero critical values.

A garden of singular orbits

A garden of singular orbits

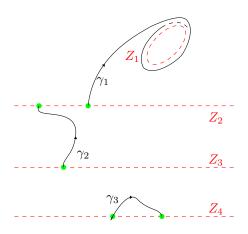


Figure: Different types of escape and singular periodic orbits: γ_1 is a generalized singular periodic orbit, γ_2, γ_3 are singular periodic orbits

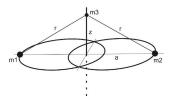
22 / 35

Generalized singular periodic orbits

Definition

An orbit $\gamma: \mathbf{R} \to M \setminus Z$ of a b-Beltrami field X is a generalized singular periodic orbit if there exist $t_1 < t_2 < \dots < t_k \to \infty$ such that $\gamma(t_k) \to p_+ \in Z$ and $t_{-1} > t_{-2} > \dots > t_{-k} \to -\infty$ such that $\gamma(t_{-k}) \to p_- \in Z$, as $k \to \infty$.

 p_+ and p_- may be contained in different components and are not necessarily zeros of X.



This includes oscillatory motions:orbits (q(t),p(t)) in the phase space $T^*\mathbb{R}^n$ such that $\limsup_{t\to\pm\infty}\|q(t)\|=\infty$ and $\liminf_{t\to\pm\infty}\|q(t)\|<\infty$.

A more symmetric case

For $g = \frac{dz^2}{z^2} + dx^2 + dy^2$, we can prove more.

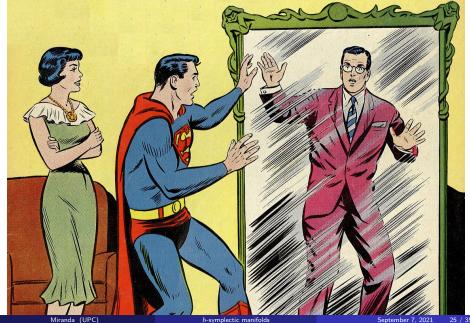
Theorem (M-Oms-Peralta Salas)

When g is semi-locally as above and X a generic asymptotically symmetric b-Beltrami vector field, X has a generalized singular periodic orbit. Moreover, it has a singular periodic orbit or at least 4 escape orbits.

In the case of $(\mathbb{T}^3, \alpha = C\cos y dx + B\sin x dy + (C\sin y + B\cos x)\frac{dz}{\sin z})$ for $|B| \neq |C|$, the singular Weinstein conjecture is satisfied.

September 7, 2021

What about the restricted three body problem?



Final questions

- Can we prove existence of singular Weinstein orbits for generic b-contact forms?
- Extend the apparatus of variational calculus to extend the action functional to this set-up.

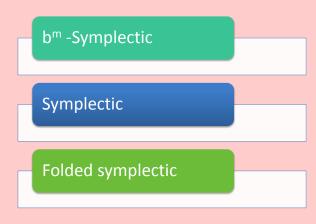
$$\mathcal{A}_{\alpha}(\gamma) = \int_{\gamma} \alpha$$

• Find higher dimensional applications to celestial mechanics (for instance, escape orbits 5-body problem).

Kovalevskaya Moser path method

28 / 35

(Singular) symplectic manifolds



Obstruction theory via cohomology

Theorem (Guillemin-M-Pires)

For a compact b-symplectic manifold (M,Z) we have $H^1(Z) \neq \{0\}$ and consequently ${}^bH^2(M) \neq \{0\}$.

Theorem (Guillemin-M-Pires)

For a compact b-symplectic manifold (M,Z) we have $H^2(Z) \neq \{0\}$ and consequently ${}^bH^3(M) \neq \{0\}$.

Obstruction theory via cohomology

Theorem (Marcut-Osorno, and Oms)

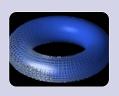
Let (M^{2n}, ω) be an orientable b-symplectic manifold with compact critical hypersurface Z, then there exists an element $c \in H^2(M)$ such that $c^{n-1} \neq 0$.

$#m\mathbb{C}P^2 #n\overline{\mathbb{C}P^2}$	symplectic	bona fide log-symplectic
m > 1, n > 0	X	✓
m > 1, n = 0	×	X
m = 1, n > 0	✓	✓
m = 1, n = 0	✓	X
m = 0, n > 0	×	X

Theorem (Cavalcanti)

If a compact oriented manifold M^{2n} , with n>1, admits a b-symplectic structure then there are classes $a,b\in H^2(M,\mathbb{R})$ such that $a^{n-1}b\neq 0$ and $b^2=0$.

Déjà-vu...





Symplectic manifolds

- Darboux theorem
- Delzant and convexity theorems
- Action-Angle coordinates

b-Sympl manifo

- Darboux theorem
- Delzant and convexity theorem
- Action-Angle theorem

Folded symplectic manifolds

- Darboux theorem (Martinet)
- Delzant-type theorems (Cannas da Silva-Guillemin-Pires)
- Action-agle theorem (M-Cardona)

Examples

Orientable Surface

- Is symplectic
- Is folded symplectic
- (orientable or not) is bsymplectic

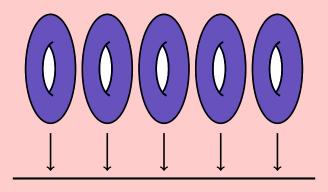
CP²

- Is symplectic
- Is folded symplectic
- Is not bsymplectic

S^4

- Is not symplectic
- Is not bsymplectic
- Is foldedsymplectic

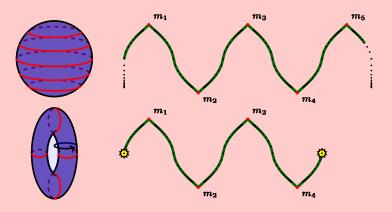
Liouville torus and integrable systems



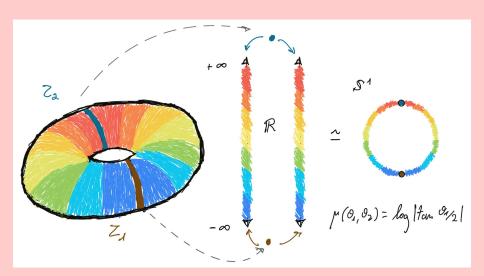
KAM theory \leadsto "some" of the Liouville torus survive under perturbations of the integrable system.

b-surfaces and their moment map

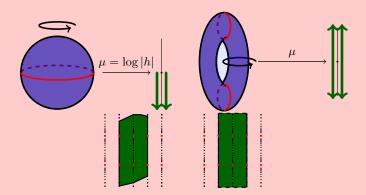
A toric *b*-surface is defined by a smooth map $f: S \longrightarrow {}^b\mathbb{R}$ or $f: S \longrightarrow {}^b\mathbb{S}^1$ (a posteriori the moment map).



A picture done by a student of this class



A b-Delzant theorem



Guillemin-M.-Pires-Scott

There is a one-to-one correspondence between b-toric manifolds and b-Delzant polytopes. Toric b-manifolds are either:

September 7, 2021

34 / 35

- ${}^{b}\mathbb{T}^{2} \times X$ (X a toric symplectic manifold of dimension (2n-2)).
- obtained from ${}^{b}\mathbb{S}^{2} \times X$ via symplectic cutting.

Periodic orbits and applications

