Geometry and Dynamics of Singular Symplectic manifolds

Eva Miranda

UPC & CRM & Observatoire de Paris

Henan University, Day 7 https:

//web.mat.upc.edu/eva.miranda/coursHenan.htm

Space for notes

Obstruction theory via cohomology

Theorem (Guillemin-M-Pires)

For a compact b-symplectic manifold (M,Z) we have $H^1(Z) \neq \{0\}$ and consequently ${}^bH^2(M) \neq \{0\}$.

Theorem (Guillemin-M-Pires)

For a compact b-symplectic manifold (M,Z) we have $H^2(Z) \neq \{0\}$ and consequently ${}^bH^3(M) \neq \{0\}$.

Obstruction theory via cohomology

Theorem (Marcut-Osorno, and Oms)

Let (M^{2n},ω) be an orientable b-symplectic manifold with compact critical hypersurface Z, then there exists an element $c \in H^2(M)$ such that $c^{n-1} \neq 0$.

$\#m\mathbb{C}P^2\#n\overline{\mathbb{C}P^2}$	symplectic	bona fide log-symplectic
m > 1, n > 0	X	✓
m > 1, n = 0	X	X
m = 1, n > 0	✓	✓
m = 1, n = 0	✓	X
m = 0, n > 0	X	X

Theorem (Cavalcanti)

If a compact oriented manifold M^{2n} , with n>1, admits a b-symplectic structure then there are classes $a,b\in H^2(M,\mathbb{R})$ such that $a^{n-1}b\neq 0$ and $b^2=0$.

(Singular) symplectic manifolds

Déjà-vu...

Symplectic manifolds

- Darboux theorem
- Delzant and convexity theorems
- Action-Angle coordinates

b-Sympl manifo

- Darboux theorem
- Delzant and convexity theorem
- Action-Angle theorem

Folded symplectic manifolds

- Darboux theorem (Martinet)
- Delzant-type theorems (Cannas da Silva-Guillemin-Pires)
- Action-agle theorem (M-Cardona)

Examples

Orientable Surface

- Is symplectic
- Is folded symplectic
- (orientable or not) is bsymplectic

CP²

- Is symplectic
- Is folded symplectic
- Is not bsymplectic

S^4

- Is not symplectic
- Is not bsymplectic
- Is foldedsymplectic

Desingularizing b^m -symplectic structures

Theorem (Guillemin-M.-Weitsman)

Given a b^m -symplectic structure ω on a compact manifold (M^{2n}, Z) :

- If m=2k, there exists a family of symplectic forms ω_{ϵ} which coincide with the b^m -symplectic form ω outside an ϵ -neighbourhood of Z and for which the family of bivector fields $(\omega_{\epsilon})^{-1}$ converges in the C^{2k-1} -topology to the Poisson structure ω^{-1} as $\epsilon \to 0$.
- If m=2k+1, there exists a family of folded symplectic forms ω_{ϵ} which coincide with the b^m -symplectic form ω outside an ϵ -neighbourhood of Z.

In particular:

- ullet Any b^{2k} -symplectic manifold admits a symplectic structure.
- \bullet Any b^{2k+1} -symplectic manifold admits a folded symplectic structure.
- \bullet The converse is not true: S^4 admits a folded symplectic structure but no b-symplectic structure.

Space for notes

The Symplectic/Contact mirror

Symplectic	Contact
$\dim M = 2n$	$\dim M = 2n + 1$
2-form ω , non-degenerate $d\omega=0$	1-form α , $\alpha \wedge (d\alpha)^n \neq 0$
Darboux theorem $\omega = \sum_{i=1}^{2n} dx_i \wedge dy_i$	$\alpha = dx_0 - \sum_{i=1}^{2n} x_i dy_i$
Hamiltonian $\iota_{X_H}\omega=-dH$	Reeb $\alpha(R)=1$, $\iota_R d\alpha=0$
	$ \text{Ham. } \begin{cases} \iota_{X_H}\alpha = H \\ \iota_{X_H}d\alpha = -dH + R(H)\alpha. \end{cases} $

An example

The kernel of a 1-form α on M^{2n+1} is a contact structure whenever $\alpha \wedge (d\alpha)^n$ is a volume form $\Leftrightarrow d\alpha|_{\xi}$ is non-degenerate.

Figure: Standard contact structure on \mathbb{R}^3

$$\begin{split} \alpha = dz - y dx \quad \xi = \ker \alpha = \mathrm{Span} &= \{ \tfrac{\partial}{\partial \mathbf{y}}, \mathbf{y} \tfrac{\partial}{\partial \mathbf{z}} + \tfrac{\partial}{\partial \mathbf{x}} \} \ d\alpha = -dy \wedge dx = dx \wedge dy \\ \Rightarrow \ \alpha \wedge d\alpha \ &= \ dx \wedge dy \wedge dz \end{split}$$

The Hopf fibration as a Reeb flow

$$S^3 := \{(u,v) \in \mathbb{C}^2 \mid |u|^2 + |v|^2 = 1\}, \alpha = \frac{1}{2}(ud\overline{u} - \overline{u}du + vd\overline{v} - \overline{v}dv).$$

The orbits of the Reeb vector field form the Hopf fibration! Why?

$$R_{\alpha} = iu \frac{\partial}{\partial u} - i\overline{u} \frac{\partial}{\partial \overline{u}} + iv \frac{\partial}{\partial v} - i\overline{v} \frac{\partial}{\partial \overline{v}}$$

Figure: Pictures by Niles Johnson

Déja vu?

 $\mathbb{S}^3=\{(z_1,z_2)\in\mathbb{C}^2:|z_1|^2+|z_2|^2=1\}$ can be endowed with Hopf coordinates $(z_1,z_2)=(\cos s\exp i\phi_1,\sin s\exp i\phi_2),\,s\in[0,\pi/2],\,\phi_{1,2}\in[0,2\pi).$ The Hopf field $R:=\partial_{\phi_1}+\partial_{\phi_2}$ is a steady Euler flow (Beltrami) with respect to the round metric.

Overtwisted contact structures

Definition

 $(M^3,\xi=\ker\alpha)$ is overtwisted if there exists D^2 s.t. $TD\cap\xi$ defines a 1-dimensional foliation given by

A contact manifold that is not overtwisted is called *tight*.

Rigidity and Flexibility in contact geometry

 S^3 admits non-equivalent contact structures (dichotomy).

- $\chi_{std} = \ker(dz + r^2d\theta)$ in cylindrical coordinates (tight standard structure).
- ② $\chi_{OT} = \ker(\cos r dz + r \sin r d\theta)$ (overtwisted contact structure).

Figure: An overtwisted and a tight structure

Theorem (Eliashberg)

Any almost contact homotopy class on a closed 3-manifold contains a unique (up to isotopy) overtwisted contact structure.

Existence of contact structures

All 3-dimensional manifolds are contact (Martinet-Lutz) and in higher dimensions:

Theorem (Borman-Eliashberg-Murphy)

Any almost contact closed manifold is contact.

The almost contact condition is a formal condition and h-principle is the key ingredient of the proof.

The restricted 3-body problem

- Simplified version of the general 3-body problem. One of the bodies has negligible mass.
- The other two bodies move independently of it following Kepler's laws for the 2-body problem.

Figure: Circular 3-body problem

An example from Celestial Mechanics: Planar restricted 3-body problem

- The time-dependent self-potential of the small body is $U(q,t) = \frac{1-\mu}{|q-q_E|} + \frac{\mu}{|q-q_M|}$, with $q_E = q_E(t)$ the position of the planet with mass $1-\mu$ at time t and $q_M = q_M(t)$ the position of the one with mass μ .
- The Hamiltonian of the system is $H(q,p,t)=p^2/2-U(q,t), \quad (q,p)\in\mathbb{R}^2\times\mathbb{R}^2,$ where $p=\dot{q}$ is the momentum of the planet.
- Consider the canonical change $(X, Y, P_X, P_Y) \mapsto (r, \alpha, P_r =: y, P_\alpha =: G)$.
- Introduce Mc Gehee coordinates (x, α, y, G) , where $r = \frac{2}{x^2}$, $x \in \mathbb{R}^+$, can be then extended to infinity (x = 0).
- The symplectic structure becomes a singular object

$$-\frac{4}{x^3}dx \wedge dy + d\alpha \wedge dG.$$

which extends to a b^3 -symplectic structure on $\mathbb{R} \times \mathbb{T} \times \mathbb{R}^2$.

16 / 31

Symplectic and contact geometry of these systems

$$(b^m$$
-symplectic)

$$\omega = \frac{1}{\mathbf{x_1^m}} \mathbf{dx_1} \wedge \mathbf{dy_1} + \sum_{i \geq 2} \mathbf{dx_i} \wedge \mathbf{dy_i}$$

or (m-folded)

$$\omega = \mathbf{x_1^m} \mathbf{dx_1} \wedge \mathbf{dy_1} + \sum_{i \geq 2} \mathbf{dx_i} \wedge \mathbf{dy_i}$$

Contact Geometry

The restriction to H=ct induces a contact structure whenever there exists a Liouville vector field is transverse to it. This contact structure may admit singularities.

How are these singularities?

Restricted planar circular 3-body problem

- Time-dependent potential: $U(q,t)=rac{1-\mu}{|q-q_E(t)|}+rac{\mu}{|q-q_M(t)|}$
- Time-dependent Hamiltonian:

$$H(q, p, t) = \frac{|p|^2}{2} - U(q, t), \quad (q, p) \in \mathbf{R}^2 \setminus \{q_E, q_M\} \times \mathbb{R}^2$$

• Rotating coordinates \rightsquigarrow Time independent Hamiltonian

$$H(q,p) = \frac{p^2}{2} - \frac{1-\mu}{|q-q_E|} + \frac{\mu}{|q-q_M|} + p_1 q_2 - p_2 q_1$$

Figure: Lagrange points (Source: NASA/WMAP Science Team)

- H has 5 critical points: L_i Lagrange points $(H(L_1) \leq \cdots \leq H(L_5))$
- Periodic orbits of X_H ? Perturbative methods (dynamical systems) or.... contact geometry!

Miranda (UPC) b-symplectic manifolds September 7, 2021

18 / 31

Topology of the circular restricted 3-body problem

- For low energy levels $c \in \mathbb{R}$, $\Sigma_c = H^{-1}(c)$ has 3 connected components: Σ_c^E (the satellite stays close to the earth), Σ_c^M (to the moon), or it is far away.
- On the axis between earth and moon there is a critical point of the energy $(L_1$, the first Lagrange point). If $c > H(L_1)$, (the satellite can cross from the region around the earth to the region around the moon) \leadsto there are two connected components, one bounded $\Sigma_c^{E,M}$ and an unbounded one.

Moser regularization of the restricted 3-body problem

- To deal with the singularities of the Kepler problem, Moser (1970) introduced a regularization procedure. This can be applied to the planar circular restricted 3-body problem.
- Via Moser's regularization Σ_c^E and Σ_c^M can be compactified to $\overline{\Sigma}_c^E$ and $\overline{\Sigma}_c^M$ diffeomorphic to $\mathbb{R}P^3$.
- Moser's regularization $\overline{\Sigma}_c^{E,M}$ is diffeomorphic to $\mathbb{R}P^3 \# \mathbb{R}P^3$.

Contact Geometry of the restricted 3-body problem

Theorem (Albers-Frauenfelder-Van Koert-Paternain)

For $c < H(L_1)$ both connected components $\overline{\Sigma}_c^E$ and $\overline{\Sigma}_c^M$ admit a compatible contact form λ . Moreover, there exists $\epsilon > 0$ such that if $c \in (H(L_1), H(L_1) + \epsilon)$ the same assertion holds true for $\overline{\Sigma}_c^{E,M}$.

Corollary (Albers-Frauenfelder-Van Koert-Paternain)

For $c < H(L_1)$ the contact structures $(\overline{\Sigma}_c^E, \ker \lambda)$ and $(\overline{\Sigma}_c^M, \ker \lambda)$ coincide with the tight $\mathbb{R}P^3$ and for $c \in (H(L_1), H(L_1) + \epsilon)$ the contact structure $(\overline{\Sigma}_c^{E,M}, \ker \lambda)$ coincides with the tight $\mathbb{R}P^3 \# \mathbb{R}P^3$.

Contact geometry of the restricted 3-body problem

Weinstein's conjecture

The Reeb vector field of a contact compact manifold admits at least one periodic orbit.

Taubes proved it in dimension 3 for regular contact structures. Application:

Theorem (Albers-Frauenfelder-Van Koert-Paternain)

For any value $c < H(L_1)$, the regularized planar circular restricted three body problem has a closed orbit with energy c.

- What if we consider the b^3 -symplectic model?
- Does this contact structure have singularities?
- Can we still prove the existence of periodic orbits?
- Can we localize these periodic orbits with respect to the line at infinity?

The Symplectic/Contact mirror "reloaded"

Symplectic	Contact
$\dim M = 2n$	$\dim M = 2n + 1$
2-form ω , non-degenerate $d\omega=0$	1-form α , $\alpha \wedge (d\alpha)^n \neq 0$
Hamiltonian $\iota_{X_H}\omega = -dH$	Reeb $\alpha(R)=1$, $\iota_R d\alpha=0$
	$\label{eq:ham.} \text{Ham. } \begin{cases} \iota_{X_H}\alpha = H \\ \iota_{X_H}d\alpha = -dH + R(H)\alpha. \end{cases}$

b-forms

• A vector field v is a b-vector field if $v_p \in T_pZ$ for all $p \in Z$. The b-tangent **bundle** bTM is defined by

$$\Gamma(U, {}^bTM) = \left\{ \begin{array}{l} \text{b-vector fields} \\ \text{on } (U, U \cap Z) \end{array} \right\}$$

• The b-cotangent bundle ${}^bT^*M$ is $({}^bTM)^*$. Sections of $\Lambda^p({}^bT^*M)$ are b-forms, ${}^b\Omega^p(M)$. The standard differential extends to

$$d: {}^b\Omega^p(M) \to {}^b\Omega^{p+1}(M)$$

• We can introduce b-contact structures on a manifold M^{2n+1} as b-forms of degree 1 for which $\alpha \wedge (d\alpha)^n \neq 0$.

Attacking the b^m -Weinstein's conjecture

Theorem (M-Oms)

Let (M,α) be a 3-dimensional b^m -contact manifold and assume the critical hypersurface Z to be closed. Then there exists infinitely many periodic Reeb orbits on Z.

Contact geometry of RPC3BP revisited

In rotating coordinates: $H(q,p) = \frac{|p|^2}{2} - \frac{1-\mu}{|q-q_E|} + \frac{\mu}{|q-q_M|} + p_1q_2 - p_2q_1$

- Symplectic polar coordinates: $(r, \alpha, P_r, P_\alpha)$.
- McGehee change of coordinates: $r = \frac{2}{x^2}$.

 b^3 -symplectic form: $-4\frac{dx}{x^3}\wedge dP_r+d\alpha\wedge dP_\alpha.$

Theorem

After the McGehee change, the Liouville vector field $Y=p\frac{\partial}{\partial p}$ is a b^3 -vector field that is everywhere transverse to Σ_c for c>0 and the level-sets $(\Sigma_c, \iota_Y\omega)$ for c>0 are b^3 -contact manifolds. The critical set is a cylinder and the Reeb vector field admits infinitely many non-trivial periodic orbits on the critical set.

25 / 31

Proof

Proof.

- On the critical set, Hamiltonian $H=\frac{1}{2}P_r^2-P_\alpha$, so that $Y(H)=P_r^2-P_\alpha=\frac{1}{2}\frac{P_r^2}{2}+c>0$;
- b^3 -contact form $\alpha=(P_r\frac{dx}{x^3}+P_\alpha d\alpha)|_{H=c}$ with $Z=\{(x,\alpha,P_r,P_\alpha)|x=0,\frac{1}{2}P_r^2-P_\alpha=c\};$
- $R_{\alpha}|_{Z}=X_{P_{r}}$ and the cylinder is foliated by periodic orbits.

The singular Weinstein conjecture re-loaded

A true singular Weinstein structures should also admit singular orbits as below:

Or,

Singular Weinstein conjecture

Let (M,α) be a compact b-contact manifold with critical hypersurface Z. Then there exists always a Reeb orbit $\gamma: \mathbb{R} \to M \setminus Z$ such that $\lim_{t\to\pm\infty} \gamma(t) = p_\pm \in Z$ and $R_\alpha(p_\pm) = 0$ (singular periodic orbit).

Incompressible fluids on Riemannian manifolds

Classical Euler's equations on \mathbb{R}^3 :

$$\begin{cases} \frac{\partial X}{\partial t} + (X \cdot \nabla)X = -\nabla P \\ \operatorname{div} X = 0 \end{cases}$$

The evolution of an inviscid and incompressible fluid flow on a Riemannian n-dimensional manifold (M,g) is described by the Euler equations:

$$\frac{\partial X}{\partial t} + \nabla_X X = -\nabla P, \qquad X = 0$$

- \bullet X is the velocity field of the fluid: a non-autonomous vector field on M.
- ullet P is the inner pressure of the fluid: a time-dependent scalar function on M.

Incompressible fluids on Riemannian manifolds

If X does not depend on time, it is a steady or stationary Euler flow: it models a fluid flow in equilibrium. The equations can be written as:

$$\nabla_X X = -\nabla P \,, \qquad X = 0 \,,$$

$$\iff i_X d\alpha = -dB, \qquad d\iota_X \mu = 0, \qquad \alpha(\cdot) := g(X, \cdot)$$

where $B := P + \frac{1}{2}||X||^2$ is the Bernoulli function.

Beltrami fields:

 $\operatorname{curl} X = fX$, with $f \in C^{\infty}(M)$ X = 0.

Example (Hopf fields on S^3 and ABC fields on T^3)

- The Hopf fields $u_1 = (-y, x, \xi, -z)$ and $u_2 = (-y, x, -\xi, z)$ are Beltrami fields on S^3 .
- The ABC flows $(\dot{x}, \dot{y}, \dot{z}) = (A\sin z + C\cos y, B\sin x + A\cos z, C\sin y + B\cos x),$ $((x,y,z) \in (\mathbb{R}/2\pi\mathbb{Z})^3)$ are Beltrami.

Recall: The magic mirror

In terms of $\alpha = \iota_X g$ and μ (volume form) the **stationary Euler equations** read

$$\begin{cases} \iota_X d\alpha = -dB \\ d\iota_X \mu = 0 \end{cases}$$

- With Cardona and Peralta-Salas we have extended this picture to manifolds with cylindrical ends to get singular contact structures.
- CMPP: The Beltrami/contact correspondence works in higher dimensions.

Let's prove it!

- The Beltrami equation \iff $d\alpha = f \iota_X \mu$. Since f > 0 and X does not vanish $\iff \alpha \wedge d\alpha = f \alpha \wedge \iota_X \mu > 0$.
- X satisfies $\iota_X(d\alpha) = \iota_X \iota_X \mu = 0$ so $X \in \ker d\alpha \iff$ it is a reparametrization of the Reeb vector field by the function $\alpha(X) = g(X, X)$.