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Obstruction theory via cohomology

Theorem (Guillemin-M-Pires)
For a compact b-symplectic manifold (M,Z) we have H1(Z) 6= {0} and
consequently bH2(M) 6= {0}.

Theorem (Guillemin-M-Pires)
For a compact b-symplectic manifold (M,Z) we have H2(Z) 6= {0} and
consequently bH3(M) 6= {0}.
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Obstruction theory via cohomology

Theorem (Marcut-Osorno, and Oms)
Let (M2n, ω) be an orientable b-symplectic manifold with compact critical hypersurface
Z, then there exists an element c ∈ H2(M) such that cn−1 6= 0.

Theorem (Cavalcanti)
If a compact oriented manifold M2n , with n > 1, admits a b-symplectic structure then
there are classes a, b ∈ H2(M,R) such that an−1b 6= 0 and b2 = 0.
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(Singular) symplectic manifolds

bm -Symplectic

Symplectic

Folded symplectic
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Déjà-vu...

Symplectic
manifolds

• Darboux theorem
• Delzant and 

convexity theorems
• Action-Angle

coordinates

b-Symplectic
manifolds

• Darboux theorem
• Delzant and 

convexity theorems
• Action-Angle

theorem

Folded symplectic
manifolds

• Darboux theorem
(Martinet)

• Delzant-type
theorems (Cannas da 
Silva-Guillemin-Pires)

• Action-agle theorem
(M-Cardona)
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Examples

Orientable 
Surface

• Is symplectic
• Is folded

symplectic
• (orientable 

or not) is b-
symplectic

CP2

• Is symplectic
• Is folded

symplectic
• Is not b-

symplectic

S4

• Is not
symplectic

• Is not b-
symplectic

• Is folded-
symplectic
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Desingularizing bm-symplectic structures

Theorem (Guillemin-M.-Weitsman)
Given a bm-symplectic structure ω on a compact manifold (M2n, Z):

If m = 2k, there exists a family of symplectic forms ωε which coincide with the
bm-symplectic form ω outside an ε-neighbourhood of Z and for which the family of
bivector fields (ωε)−1 converges in the C2k−1-topology to the Poisson structure
ω−1 as ε→ 0 .
If m = 2k + 1, there exists a family of folded symplectic forms ωε which coincide
with the bm-symplectic form ω outside an ε-neighbourhood of Z.

In particular:
Any b2k-symplectic manifold admits a symplectic structure.
Any b2k+1-symplectic manifold admits a folded symplectic structure.
The converse is not true: S4 admits a folded symplectic structure but no
b-symplectic structure.
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Space for notes
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The Symplectic/Contact mirror

Symplectic Contact
dimM = 2n dimM = 2n+ 1

2-form ω, non-degenerate dω = 0 1-form α, α ∧ (dα)n 6= 0
Darboux theorem ω =

∑2n
i=1 dxi ∧ dyi α = dx0 −

∑2n
i=1 xidyi

Hamiltonian ιXH
ω = −dH Reeb α(R) = 1, ιRdα = 0

Ham.
{
ιXH

α = H

ιXH
dα = −dH +R(H)α.
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An example
The kernel of a 1-form α on M2n+1 is a contact structure whenever
α ∧ (dα)n is a volume form ⇔ dα|ξ is non-degenerate.

Figure: Standard contact structure on R3

α = dz − ydx ξ = kerα = Span = { ∂∂y , y
∂
∂z + ∂

∂x} dα = −dy ∧ dx = dx ∧ dy

⇒ α ∧ dα = dx ∧ dy ∧ dz
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The Hopf fibration as a Reeb flow
S3 := {(u, v) ∈ C2 | |u|2 + |v|2 = 1}, α = 1

2(udu− udu+ vdv − vdv) .
The orbits of the Reeb vector field form the Hopf fibration! Why?

Rα = iu
∂

∂u
− iu ∂

∂u
+ iv

∂

∂v
− iv ∂

∂v

Figure: Pictures by Niles Johnson
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Déja vu?
S3 = {(z1, z2) ∈ C2 : |z1|2 + |z2|2 = 1} can be endowed with Hopf coordinates
(z1, z2) = (cos s exp iφ1, sin s exp iφ2), s ∈ [0, π/2], φ1,2 ∈ [0, 2π). The Hopf field
R := ∂φ1 + ∂φ2 is a steady Euler flow (Beltrami) with respect to the round metric.
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Overtwisted contact structures

Definition
(M3, ξ = kerα) is overtwisted if there exists D2 s.t. TD ∩ ξ defines a
1-dimensional foliation given by

A contact manifold that is not overtwisted is called tight.
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Rigidity and Flexibility in contact geometry

S3 admits non-equivalent contact structures (dichotomy).
1 χstd = ker(dz + r2dθ) in cylindrical coordinates (tight standard structure).
2 χOT = ker(cos rdz + r sin rdθ) (overtwisted contact structure).

Figure: An overtwisted and a tight structure

Theorem (Eliashberg)
Any almost contact homotopy class on a closed 3-manifold contains a unique (up
to isotopy) overtwisted contact structure.
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Existence of contact structures

All 3-dimensional manifolds are contact (Martinet-Lutz) and in higher dimensions:

Theorem (Borman-Eliashberg-Murphy)
Any almost contact closed manifold is contact.

The almost contact condition is a formal condition and h-principle is the key
ingredient of the proof.
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The restricted 3-body problem
Simplified version of the general 3-body problem. One of the bodies has negligible
mass.
The other two bodies move independently of it following Kepler’s laws for the
2-body problem.

Figure: Circular 3-body problem
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An example from Celestial Mechanics: Planar restricted
3-body problem

The time-dependent self-potential of the small body is U(q, t) = 1−µ
|q−qE |

+ µ
|q−qM |

,

with qE = qE(t) the position of the planet with mass 1− µ at time t and
qM = qM (t) the position of the one with mass µ.
The Hamiltonian of the system is H(q, p, t) = p2/2− U(q, t), (q, p) ∈ R2 × R2,
where p = q̇ is the momentum of the planet.
Consider the canonical change (X,Y, PX , PY ) 7→ (r, α, Pr =: y, Pα =: G).
Introduce Mc Gehee coordinates (x, α, y,G), where r = 2

x2 , x ∈ R+, can be
then extended to infinity (x = 0).
The symplectic structure becomes a singular object

− 4
x3 dx ∧ dy + dα ∧ dG.

which extends to a b3-symplectic structure on R× T× R2.
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Symplectic and contact geometry of these systems

(bm-symplectic)
ω = 1

xm
1

dx1 ∧ dy1 +
∑
i≥2

dxi ∧ dyi

or (m-folded)
ω = xm

1 dx1 ∧ dy1 +
∑
i≥2

dxi ∧ dyi

Contact Geometry
The restriction to H = ct induces a contact structure whenever there exists a
Liouville vector field is transverse to it. This contact structure may admit
singularities.

How are these singularities?
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Restricted planar circular 3-body problem
Time-dependent potential: U(q, t) = 1−µ

|q−qE(t)| + µ
|q−qM (t)|

Time-dependent Hamiltonian:
H(q, p, t) = |p|2

2 − U(q, t), (q, p) ∈ R2 \ {qE , qM} × R2

Rotating coordinates  Time independent Hamiltonian
H(q, p) = p2

2 −
1−µ
|q−qE | + µ

|q−qM | + p1q2 − p2q1

Figure: Lagrange points ( Source: NASA/WMAP Science Team)

H has 5 critical points: Li Lagrange points (H(L1) ≤ · · · ≤ H(L5))
Periodic orbits of XH? Perturbative methods (dynamical systems) or....
contact geometry!
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Topology of the circular restricted 3-body problem

For low energy levels c ∈ R, Σc = H−1(c) has 3 connected components: ΣEc (the
satellite stays close to the earth), ΣMc (to the moon), or it is far away.
On the axis between earth and moon there is a critical point of the energy (L1, the
first Lagrange point). If c > H(L1), (the satellite can cross from the region around
the earth to the region around the moon) there are two connected components,
one bounded ΣE,Mc and an unbounded one.
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Moser regularization of the restricted 3-body problem

To deal with the singularities of the Kepler problem, Moser (1970) introduced
a regularization procedure. This can be applied to the planar circular
restricted 3-body problem.
Via Moser’s regularization ΣEc and ΣMc can be compactified to ΣEc and ΣMc
diffeomorphic to RP 3.
Moser’s regularization ΣE,Mc is diffeomorphic to RP 3#RP 3.
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Contact Geometry of the restricted 3-body problem

Theorem (Albers-Frauenfelder-Van Koert-Paternain)
For c < H(L1) both connected components ΣEc and ΣMc admit a compatible
contact form λ. Moreover, there exists ε > 0 such that if c ∈ (H(L1), H(L1) + ε)
the same assertion holds true for ΣE,Mc .

Corollary (Albers-Frauenfelder-Van Koert-Paternain)
For c < H(L1) the contact structures

(
ΣEc , kerλ

)
and

(
ΣMc , kerλ

)
coincide with

the tight RP 3 and for c ∈ (H(L1), H(L1) + ε) the contact structure(
ΣE,Mc , kerλ

)
coincides with the tight RP 3#RP 3.
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Contact geometry of the restricted 3-body problem

Weinstein’s conjecture
The Reeb vector field of a contact compact manifold admits at least one periodic
orbit.

Taubes proved it in dimension 3 for regular contact structures. Application:

Theorem (Albers-Frauenfelder-Van Koert-Paternain)
For any value c < H(L1), the regularized planar circular restricted three body
problem has a closed orbit with energy c.

What if we consider the b3-symplectic model?
Does this contact structure have singularities?
Can we still prove the existence of periodic orbits?
Can we localize these periodic orbits with respect to the line at
infinity?
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The Symplectic/Contact mirror ”reloaded”
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b-forms

A vector field v is a b-vector field if vp ∈ TpZ for all p ∈ Z. The b-tangent
bundle bTM is defined by

Γ(U, bTM) =
{

b-vector fields
on (U,U ∩ Z)

}

The b-cotangent bundle bT ∗M is (bTM)∗. Sections of Λp(bT ∗M) are
b-forms, bΩp(M).The standard differential extends to

d : bΩp(M)→ bΩp+1(M)

We can introduce b-contact structures on a manifold M2n+1 as b-forms of
degree 1 for which α ∧ (dα)n 6= 0.
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Attacking the bm-Weinstein’s conjecture

Theorem (M-Oms)
Let (M,α) be a 3-dimensional bm-contact manifold and assume the critical
hypersurface Z to be closed. Then there exists infinitely many periodic Reeb
orbits on Z.

Contact geometry of RPC3BP revisited
In rotating coordinates: H(q, p) = |p|2

2 −
1−µ
|q−qE | + µ

|q−qM | + p1q2 − p2q1

Symplectic polar coordinates: (r, α, Pr, Pα).
McGehee change of coordinates: r = 2

x2 .
b3-symplectic form: −4dxx3 ∧ dPr + dα ∧ dPα.

Theorem
After the McGehee change, the Liouville vector field Y = p ∂

∂p is a b3-vector field
that is everywhere transverse to Σc for c > 0 and the level-sets (Σc, ιY ω) for
c > 0 are b3-contact manifolds. The critical set is a cylinder and the Reeb vector
field admits infinitely many non-trivial periodic orbits on the critical set.
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Proof

Proof.
On the critical set, Hamiltonian H = 1

2P
2
r − Pα, so that

Y (H) = P 2
r − Pα = 1

2
P 2

r

2 + c > 0;
b3-contact form α = (Pr dxx3 + Pαdα)|H=c with
Z = {(x, α, Pr, Pα)|x = 0, 1

2P
2
r − Pα = c};

Rα|Z = XPr and the cylinder is foliated by periodic orbits.
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The singular Weinstein conjecture re-loaded

A true singular Weinstein structures should also admit singular orbits as below:

γ2

γ1

Or,

Singular Weinstein conjecture
Let (M,α) be a compact b-contact manifold with critical hypersurface Z. Then
there exists always a Reeb orbit γ : R→M \ Z such that
limt→±∞ γ(t) = p± ∈ Z and Rα(p±) = 0 (singular periodic orbit).
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Incompressible fluids on Riemannian manifolds

Classical Euler’s equations on R3 :{
∂X

∂t
+ (X · ∇)X = −∇P

divX = 0

The evolution of an inviscid and incompressible fluid flow on a Riemannian
n-dimensional manifold (M, g) is described by the Euler equations:

∂X

∂t
+∇XX = −∇P , X = 0

X is the velocity field of the fluid: a non-autonomous vector field on M .
P is the inner pressure of the fluid: a time-dependent scalar function on M .
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Incompressible fluids on Riemannian manifolds
If X does not depend on time, it is a steady or stationary Euler flow: it models a
fluid flow in equilibrium. The equations can be written as:

∇XX = −∇P , X = 0 ,

⇐⇒ iXdα = −dB , dιXµ = 0 , α(·) := g(X, ·)
where B := P + 1

2 ||X||
2 is the Bernoulli function.

Beltrami fields:
curlX = fX, with f ∈ C∞(M) X = 0.

Example (Hopf fields on S3 and ABC fields on T 3)
The Hopf fields u1 = (−y, x, ξ,−z) and u2 = (−y, x,−ξ, z) are Beltrami
fields on S3.
The ABC flows
(ẋ, ẏ, ż) = (A sin z + C cos y,B sin x+A cos z, C sin y +B cosx),
((x, y, z) ∈ (R/2πZ)3) are Beltrami.
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Recall: The magic mirror

In terms of α = ιXg and µ (volume form) the stationary Euler equations read{
ιXdα = −dB
dιXµ = 0

Etnyre-Ghrist:
{Rotational non singular Beltrami v.f.}� {Reeb v.f. reparametrized}
With Cardona and Peralta-Salas we have extended this picture to manifolds
with cylindrical ends to get singular contact structures.
CMPP: The Beltrami/contact correspondence works in higher dimensions.
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Let’s prove it!

The Beltrami equation ! dα = fιXµ . Since f > 0 and X does not vanish
 α ∧ dα = fα ∧ ιXµ > 0.
X satisfies ιX(dα) = ιXιXµ = 0 so X ∈ ker dα! it is a reparametrization
of the Reeb vector field by the function α(X) = g(X,X).
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