Geometry and Dynamics of Singular Symplectic manifolds

Eva Miranda

UPC & CRM & Observatoire de Paris

Hénan University, Day 3 https:

//web.mat.upc.edu/eva.miranda/coursHenan.htm

Modular vector field

Definition

Given a Poisson manifold (M,Π) and a volume form Ω , the modular vector field X_{Π}^{Ω} associated to the pair (Π,Ω) is the derivation given by the mapping

$$f\mapsto \frac{L_{X_f}\Omega}{\Omega}$$

- ② $X^{H\Omega} = X^{\Omega} X_{log(H)}$. \leadsto its first cohomology class in Poisson cohomology does not depend on Ω .
- Examples of unimodular (vanishing modular class) Poisson manifolds: symplectic manifolds.
- ① In the case of *b*-Poisson manifolds in dimension 2, $\{x,y\}=y$ and the modular vector field is $\frac{\partial}{\partial x}$.

Modular vector fields

Modular vector field for Darboux form

The modular vector field of a local b-Poisson manifold with local normal form,

$$\Pi = y_1 \frac{\partial}{\partial x_1} \wedge \frac{\partial}{\partial y_1} + \sum_{i=2}^n \frac{\partial}{\partial x_i} \wedge \frac{\partial}{\partial y_i}$$

with respect to the volume form $\Omega = \sum_i dx_i \wedge dy_i$ is,

$$X^{\Omega} = \frac{\partial}{\partial x_1}.$$

The modular vector field of a b-Poisson manifold is tangent to the critical set Z and is transverse to the symplectic leaves of the induced symplectic foliation on Z.

Induced Poisson structures

Induced Poisson structures

a b-Poisson structure Π on M^{2n} induces a regular corank 1 Poisson structure on Z.

Given a Poisson manifold Z with codimension 1 symplectic foliation \mathcal{L} ,

- Does $(Z, \Pi_{\mathcal{L}})$ extend to a b-Poisson structure on a neighbourhood of Z in M?
- If so to what extent is this structure unique?

Invariants: Dimension 2

Radko classified b-Poisson structures on compact oriented surfaces giving a list of invariants:

- Geometrical: The topology of S and the curves γ_i where Π vanishes.
- Dynamical: The periods of the "modular vector field" along γ_i .
- Measure: The regularized Liouville volume of S, $V_h^{\epsilon}(\Pi) = \int_{|h| > \epsilon} \omega_{\Pi}$ for h a function vanishing linearly on the curves $\gamma_1, \ldots, \gamma_n$.

Figure: Two admissible vanishing curves (a) and (b) for Π ; the ones in (b') is not admissible.

5 / 29

Singular forms

• A vector field v is a b-vector field if $v_p \in T_pZ$ for all $p \in Z$. The b-tangent bundle bTM is defined by

$$\Gamma(U, {}^bTM) = \left\{ \begin{array}{l} \text{b-vector fields} \\ \text{on } (U, U \cap Z) \end{array} \right\}$$

• The *b*-cotangent bundle ${}^bT^*M$ is $({}^bTM)^*$. Sections of $\Lambda^p({}^bT^*M)$ are *b*-forms, ${}^b\Omega^p(M)$. The standard differential extends to

$$d: {}^b\Omega^p(M) \to {}^b\Omega^{p+1}(M)$$

- ullet A b-symplectic form is a closed, non-degenerate, b-form of degree 2.
- This dual point of view, allows to prove a b-Darboux theorem and semilocal forms via an adaptation of Moser's path method because we can play the same tricks as in the symplectic case.

6 / 29

Space for notes

Example

 $M=\mathbb{T}^4$ and $Z=\mathbb{T}^3\times\{0\}$. Consider on Z the codimension 1 foliation given by $\theta_3=a\theta_1+b\theta_2+k$, with rationally independent $a,b\in\mathbb{R}$. Then take

$$h = \log(\sin \theta_4),$$

$$\alpha = \frac{a}{a^2 + b^2 + 1} d\theta_1 + \frac{b}{a^2 + b^2 + 1} d\theta_2 - \frac{1}{a^2 + b^2 + 1} d\theta_3,$$

$$\omega = d\theta_1 \wedge d\theta_2 + b d\theta_1 \wedge d\theta_3 - a d\theta_2 \wedge d\theta_3,$$

The 2-form $\omega_{\Pi}=dh\wedge\alpha+\omega$ defines a b-symplectic form in a neighbourhood of Z, which can be extended to M.

Geometrical invariants

Theorem (Mazzeo-Melrose)

The b-cohomology groups of a compact M are computable by

$${}^{b}H^{*}(M) \cong H^{*}(M) \oplus H^{*-1}(Z).$$

Indeed,

Theorem (Guillemin-M.-Pires)

$${}^bH^*(M) \cong H_{\Pi}^*(M)$$

Geometrical invariants

Corollary (Radko)

Let (M,Z) be a compact connected two-dimensional b-symplectic manifold, where M is of genus g and Z a union of n curves on M. Then the Poisson cohomology of M is given by

$$H_{\Pi}^{0}(M) = \mathbb{R}$$

$$H_{\Pi}^{1}(M) = \mathbb{R}^{n+2g}$$

$$H_{\Pi}^{2}(M) = \mathbb{R}^{n+1}.$$

Obstruction theory via cohomology

Theorem (Guillemin-M-Pires)

For a compact b-symplectic manifold (M,Z) we have $H^1(Z) \neq \{0\}$ and consequently ${}^bH^2(M) \neq \{0\}$.

Theorem (Guillemin-M-Pires)

For a compact b-symplectic manifold (M,Z) we have $H^2(Z) \neq \{0\}$ and consequently ${}^bH^3(M) \neq \{0\}$.

Obstruction theory via cohomology

Theorem (Marcut-Osorno, and Oms)

Let (M^{2n},ω) be an orientable b-symplectic manifold with compact critical hypersurface Z, then there exists an element $c\in H^2(M)$ such that $c^{n-1}\neq 0$.

$#m\mathbb{C}P^2#n\overline{\mathbb{C}P^2}$	symplectic	bona fide log-symplectic
m > 1, n > 0	X	✓
m > 1, n = 0	X	X
m = 1, n > 0	✓	✓
m = 1, n = 0	✓	X
m = 0, n > 0	X	X

Theorem (Cavalcanti)

If a compact oriented manifold M^{2n} , with n>1, admits a b-symplectic structure then there are classes $a,b\in H^2(M,\mathbb{R})$ such that $a^{n-1}b\neq 0$ and $b^2=0$.

Theorem

For all $p \in Z$, there exists a Darboux coordinate system $x_1, y_1, \dots, x_n, y_n$ centered at p such that Z is defined by $x_1 = 0$ and

$$\Pi = x_1 \frac{\partial}{\partial x_1} \wedge \frac{\partial}{\partial y_1} + \sum_{i=2}^n \frac{\partial}{\partial x_i} \wedge \frac{\partial}{\partial y_i}$$

Space for notes

Theorem (Guillemin-M-Pires)

Let ω_0 and ω_1 be two b-symplectic forms on (M,Z). If $\omega_0|_Z=\omega_1|_Z$, then there exist neighborhoods U_0,U_1 of Z in M and a diffeomorphism $\gamma:U_{01}$ such that $\gamma|_Z=\operatorname{id}_Z$ and $\gamma^*\omega_1=\omega_0$.

An alternative statement is the following:

Theorem (Guillemin-M-Pires)

Let ω_0 and ω_1 be two b-symplectic forms on (M,Z). If they induce on Z the same restriction of the Poisson structure and their modular vector fields differ on Z by a Hamiltonian vector field, then there exist neighborhoods U_0, U_1 of Z in M and a diffeomorphism $\gamma: U_0 \to U_1$ such that $\gamma|_Z = \operatorname{id}_Z$ and $\gamma^*\omega_1 = \omega_0$.

b-Moser (cont)

Theorem (Guillemin-M-Pires)

Let ω be a b-symplectic form on (M,Z) and $p\in Z$. Then we can find a coordinate chart $(U,x_1,y_1,\ldots,x_n,y_n)$ centered at p such that on U the hypersurface Z is locally defined by $y_1=0$ and

$$\omega = dx_1 \wedge \frac{dy_1}{y_1} + \sum_{i=2}^n dx_i \wedge dy_i.$$

Theorem (Guillemin-M-Pires)

Suppose that ω_t , for $0 \leq t \leq 1$, is a smooth family of b-symplectic forms on (M,Z) joining ω_0 and ω_1 and such that the b-cohomology class $[\omega_t]$ does not depend on t. Then, there exists a family of diffeomorphisms $\gamma_t: M \to M$, for $0 \leq t \leq 1$ such that γ_t leaves Z invariant and $\gamma_t^* \omega_t = \omega_0$.

Space for notes

Applications: Radko's theorem

Theorem (Radko)

The set of curves, modular periods and regularized Liouville volume completely determines, up to Poisson diffeomorphisms, the Poisson b-structure on a compact oriented surface S.

This can be reproved using the Moser path method. The reformulation in the language of b-forms yields.

Corollary (Classification of b-symplectic surfaces à la Moser, Guillemin-M.-Pires)

Two b-symplectic forms ω_0 and ω_1 on an orientable compact surface are b-symplectomorphic if and only if $[\omega_0] = [\omega_1]$.

Indeed.

$${}^bH^*(M) \cong H_{\Pi}^*(M)$$

Space for notes

The extension property

Theorem (Guillemin-Miranda-Pires)

Let (M^{2n+1},Π_0) be a compact corank-1 regular Poisson manifold with vanishing invariants then there exists an extension of (M^{2n+1},Π) to a b-Poisson manifold (U,Π) . The extension is unique , up to isomorphism, among the extensions such that [v] is the image of the modular class under the map:

$$H^1_{Poisson}(U) \longrightarrow H^1_{Poisson}(M^{2n+1})$$

Construction

Given a Poisson vector field v on $(Z,\Pi_{\mathcal{L}})$ with v transverse to \mathcal{L} chose $\alpha_Z \in \Omega^1(Z)$ and $\omega_Z \in \omega^2(Z)$ such that:

- $2 \iota_v \omega_Z = 0.$
- $oldsymbol{\circ}$ α_Z is a defining one form for the symplectic foliation.
- $oldsymbol{0}$ ω_Z restricts to the induced symplectic form on each symplectic leaf.

Construction

Now consider $p:U\longrightarrow Z$ a tubular neighbourhood of Z in U and let

$$\omega = p^*(\alpha_Z) \wedge \frac{df}{f} + p^*(\omega_Z)$$

with f a defining function for Z.

Then one can check that this is a semi-local extension to Poisson b-manifold and that the modular vector field of ω restricted to Z is v Uniqueness relies strongly on a relative Moser's theorem for our b-Poisson manifolds. In order to talk about this, we need to introduce b-cohomology.

(Singular) symplectic manifolds

Déjà-vu...

Symplectic manifolds

- Darboux theorem
- Delzant and convexity theorems
- Action-Angle coordinates

b-Symplect manifold:

- Darboux theorem
- Delzant and convexity theorem
- Action-Angle
 theorem

Folded symplectic manifolds

- Darboux theore (Martinet)
- Delzant-type theorems (Cannas da Silva-Guillemin-Pires
- Action-agle theorem (M-Cardona)

Examples and counterexamples

Orientable Surface

- Is symplectic
- Is folded symplectic
- (orientable or not) is bsymplectic

CP²

- Is symplectic
- Is folded symplectic
- Is not bsymplectic

S⁴

- Is not symplectic
- Is not bsymplectic
- Is foldedsymplectic

Desingularizing b^m -symplectic structures

Theorem (Guillemin-M.-Weitsman)

Given a b^m -symplectic structure ω on a compact manifold (M^{2n}, Z) :

- If m=2k, there exists a family of symplectic forms ω_{ϵ} which coincide with the b^m -symplectic form ω outside an ϵ -neighbourhood of Z and for which the family of bivector fields $(\omega_{\epsilon})^{-1}$ converges in the C^{2k-1} -topology to the Poisson structure ω^{-1} as $\epsilon \to 0$.
- If m = 2k + 1, there exists a family of folded symplectic forms ω_{ϵ} which coincide with the b^m -symplectic form ω outside an ϵ -neighbourhood of Z.

In particular:

- ullet Any b^{2k} -symplectic manifold admits a symplectic structure.
- ullet Any b^{2k+1} -symplectic manifold admits a folded symplectic structure.
- ullet The converse is not true: S^4 admits a folded symplectic structure but no b-symplectic structure.

Sketch of the proof: m = 2k

General principle: If you do not like something, just change it!

$$\omega = \frac{dx}{x^{2k}} \wedge \left(\sum_{i=0}^{2k-1} \alpha_i x^i\right) + \beta \tag{1}$$

 $\bullet \ f \in \mathcal{C}^{\infty}(\mathbb{R}) \ \text{odd function s.t.} \ f'(x) > 0 \ \text{for} \ x \in [-1,1] \text{,}$

and such that outside [-1,1],

$$f(x) = \begin{cases} \frac{-1}{(2k-1)x^{2k-1}} - 2 & \text{for } x < -1\\ \frac{-1}{(2k-1)x^{2k-1}} + 2 & \text{for } x > 1 \end{cases}$$

- Re-scale on ϵ .
- Replace $\frac{dx}{x^{2k}}$ by df_{ϵ} to obtain $\omega_{\epsilon} = df_{\epsilon} \wedge (\sum_{i=0}^{2k-1} \alpha_i x^i) + \beta$ which is symplectic.

Applications of desingularization

ullet Convexity for \mathbb{T}^k -actions.

- Delzant theorem and Delzant-type theorem for semitoric systems (bolytopes).
- Applications to KAM.
- Periodic orbits of problems in celestial mechanics and applications to stability.

Desingularizing everything...

The restricted 3-body problem

- Simplified version of the general 3-body problem. One of the bodies has negligible mass.
- The other two bodies move independently of it following Kepler's laws for the 2-body problem.
- After doing a change to Mc Gehee coordinates $(r = \frac{2}{x^2}, x \in \mathbf{R}^+,)$ the symplectic structure becomes a singular object $\omega = -\frac{4}{x^3} dx \wedge dy + d\alpha \wedge dG$. for x > 0

Figure: Circular 3-body problem

Applications of desingularization

- Periodic orbits away from critical set.
- KAM theory.
- Action-angle coordinates with limitations.