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The problems of this course mainly follow the articles by Victor Guillemin, Eva Miranda, Ana Rita
Pires, Geoffrey Scott, Jonathan Weitsman and others. We would refer the reader to [GMP11], [GMP14],
[GMPS15], [GMPS17], [GMW18b], [GMW18a], [GMW19], [GMW21] and [KMS16] to cite a few places
to check the basics and not-so-basics of b-symplectic geometry.

Problem session 2. Classical problems for bm-symplectic and bm-
contact manifolds. Toric actions, action-angle coordinates and
integrable systems on bm-symplectic manifolds. Perturbations of
integrable systems and KAM theory

Exercise 0.1. Let (Mn,Π) an orientable, connected Poisson manifold. Then, we know that Ωn(M) ∼=
C∞(M). We define the modular vector field as

XΩ
Π : C∞(M) −→ C∞(M)

f 7−→ Luf
Ω

Ω

,

or, more formally, XΩ
Π(f) is the only function such that Luf

ω = XΩ
Π(f)Ω.

uf , here, denotes the Hamiltonian vector field of f , this means, such that uf (g) = {f, g}.

a) Show that it is a well defined derivation.

b) Show that, for any H ∈ C∞(M) that doesn’t vanish anywhere,

XHΩ
Π = XΩ

Π − ulog |H|.

c) Let (M2m, ω) a symplectic manifold. Show that the modular vector field XΩ
ω−1 is a Hamiltonian

vector field.

(Hint: Compute the modular vector field in local Darboux coordinates and use the last part of the
exercise to get the global result)

d) Compute the modular vector field for the b-Poisson manifold (R2, {·, ·}), where {x, y} = y.

Exercise 0.2. Consider Λ∗(M) the algebra of multivector fields. Recall that the Schouten-Nijenhuis
bracket is a bilinear map

[·, ·] : Λk(M)× Λl(M) −→ Λ(k−1)(l−1)(M)

such that

(i) [a, b] = (−1)(|a|−1)(|b|−1)[b, a]

(ii) [a, [b, c]] = [[a, b], c] + (−1)(|a|−1)(|b|−1)[b, [a, c]]

(iii) If |a| = 1, then [a, b] = Lab

(iv) If f ∈ C∞(M), then [f, a] = −idf (a).

Let Π ∈ Λ2(M) a Poisson structure, and let

dkΠ : Λk(M) −→ Λk+1(M)
V 7−→ [Π, V ]

.

a) Show that d∗Π is a cochain differential. This means, prove that dk+1
Π ◦ dkΠ = 0.

The resulting cohomology, denoted by H∗Π(M), is called Poisson cohomology.

b) What do the classes of H1
Π(M) represent?

Exercise 0.3. Consider the b-symplectic manifold (S2, Z = {h = 0}, ω = dh
h ∧dθ), where the coordinates

on the sphere are h ∈ [−1, 1] and θ ∈ [0, 2π]. Compute a moment map of the S1-action given by the flow
of − ∂

∂θ and draw its image.
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Exercise 0.4. Consider the b-symplectic manifold

(T2, Z = {θ1 ∈ {0, π}}, ω =
dθ1

sin θ1
∧ dθ2),

where the coordinates on the torus are θ1, θ2 ∈ [0, 2π]. Find the bC∞ Hamiltonian function of the circle
action of rotation on the θ2 coordinate and draw it

Exercise 0.5. The moment image of a 2n-dimensional b-symplectic toric manifold is represented by an
n-dimensional polytope P , and the corresponding extremal polytope ∆P is an (n−1)-dimensional Delzant
polytope. Describe the extremal polytope for n = 1 and n = 2.

Exercise 0.6. Compute the moment map of the toric action T2 on CP 2 given by ((θ1, θ2), [z0 : z1 : z2]) 7→
([z0 : eiθ1z1 : eiθ2z2]). Then, construct a b-toric manifold applying symplectic blow-up and the Gompf
sum on CP 2 such that:

• it has 6 fixed points, or

• it has 12 fixed points.

What you will obtain is a Hirzebruch surface.

The following exercises are related with the cotangent lift, which is an essential tool since Arnold-
Liouville-Mineur Theorem can be restated in a cotangent lift version ([KM17]). These problems also
show the connection of singularities with physical systems.

Exercise 0.7. The coupling of two harmonic oscillators gives can be modelled in T ∗(R2). Check that, in
this system, the energy function

H =
1

2
(y2

1 + y2
2) +

1

2
(x2

1 + x2
2)

and the angular momentum function
L = x1y2 − x2y1

Poisson commute. I.e. check that {H,L} = 0.

Exercise 0.8. Prove that the singularity at the top of the spherical pendulum is of focus-focus type. Hint:
use local coordinates (x, y, z) = (x, y,

√
l2 − x2 − y2).

Exercise 0.9. Compute the infinitesimal generator of the cotangent lift of the action given by:

ρ : (S1 × R)× R2 −→ R2

((θ, t),

(
x1

x2

)
) 7−→ ρθ,t

(
x1

x2

)
= e−t

(
cos θ sin θ
− sin θ cos θ

)(
x1

x2

)
,

and see that it coincides with the vector field associated to the normal form of the focus-focus singularity.
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