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The problems of this course mainly follow the articles by Victor Guillemin, Eva Miranda, Ana Rita
Pires, Geoffrey Scott, Jonathan Weitsman and others. We would refer the reader to [GMP11], [GMP14],
[GMPS15], [GMPS17], [GMW18b], [GMW18a], [GMW19], [GMW21] and [KMS16] to cite a few places
to check the basics and not-so-basics of b-symplectic geometry.

1 Problem session 1. Introduction to symplectic geometry, b-
symplectic geometry, Poisson manifolds, b-forms, the path
method

Exercise 1.1. Check that the Circular Planar Restricted 3 Body Problem provides a b3-symplectic struc-
ture. To do this, consider the symplectic form on T ∗R2 in polar coordinates,

ω = dr ∧ dα+ dPr ∧ dPα,

and apply to it the non-canonical McGehee change of coordinates, given by r = 2
x2 , but without altering

the momentum associated to r.

Exercise 1.2. Let Z = {z1, ..., zk} ⊂ S1 a finite collection of points within the circle. If we consider
(S1, Z) as a b-manifold, is it true that TS1 ∼= bTS1? This means, are the vector bundles isomorphic?
Does this depend on the number of points k?

Exercise 1.3. Consider M = T2 the 2-torus. Let Z1, Z2 be two disjoint non-contractible circles embedded
in M as in the picture:

MZ1

Z2

Does the b-manifold (M,Z1) admit a b-symplectic structure? Does (M,Z1 ∪ Z2)?
Hint: Use the results of the last exercise.

Exercise 1.4. Let (M,ω) be a symplectic manifold and let Π be the corresponding bivector (i.e., ω(Xf , Xg) =
{f, g} = Π(df, dg) for any smooth functions f, g). Suppose ω is locally given as

ω =
∑
i<j

ωijdxi ∧ dxj .

Prove that the coefficients of Π satisfy πi<j = (ωij)
−1.

Exercise 1.5. Prove that the cubic polynomial g(x) = x(x − 1)(x − t), 0 < t < 1, defines a Poisson
structure on R2 given by

Π = (g(x)− y2)
∂

∂x
∧ ∂

∂y
.

Check that it extends smoothly to a b-symplectic structure on RP 2 with critical set Z given by the real
elliptic curve y2 = g(x). [GL14]
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The critical set has two connected components: D0, containing {(0, 0), (t, 0)} and with trivial normal
bundle, and D1, containing {(1, 0), (∞, 0)} and with nontrivial normal bundle.

Exercise 1.6. Prove that S4 does not admit a b-symplectic structure.

Exercise 1.7. Prove the following result from [Cav17]. If a compact oriented manifold M2n, with n > 1,
admits a b-symplectic structure, then there are classes a, b ∈ H2(M ;R) such that an−1b 6= 0 and b2 = 0.

Exercise 1.8. Prove the following corollaries

1. An orientable, compact, b-symplectic manifold M of dimension 2n has b2i(M) ≥ 2 for 0 < i < n.

2. For n > 1, CPn has no b-symplectic structure and, for n > 2, the blow-up of CPn along a symplectic
submanifold of real codimension greater than 4 also does not carry b-symplectic structures.

Exercise 1.9. Compute the b-cohomology class of the b-torus of Radko with 2n connected components

Exercise 1.10. Let (R, πR) be a Radko compact surface and (S, πS) be a compact symplectic surface.
Show that (R× S, πR + πS) is a b-Poisson manifold of dimension 4.

Exercise 1.11. Take S2 with the b-Poisson structure Π1 = h ∂
∂h ∧

∂
∂θ and the symplectic torus T2 with

dual Poisson structure Π2 = ∂
∂θ1
∧ ∂
∂θ2

. Prove that

Π̂ = h
∂

∂h
∧ (

∂

∂θ
+

∂

∂θ1
) + Π2

is a b-Poisson structure on S2 × T2.

Exercise 1.12. Let (N2n+1, π) be a regular corank-1 Poisson manifold, X be a Poisson vector field and
f : S1 → R a smooth function. Prove that the bivector field

Π = f(θ)
∂

∂θ
∧X + π

is a b-Poisson structure on S1×N if the function f vanishes linearly and the vector field X is transverse
to the symplectic leaves of N .

Exercise 1.13. Prove that the bracket {f, g} = ω(Xf , Xg) for f, g ∈ C∞ defines a Poisson structure on
a symplectic manifold (M2n, ω). Hint: To check the Jacobi identity, expand dω(Xf , Xg, Xh).
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