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A good way to convey what an area of Mathematics is about is by giving a list of
problems. This is particularly true in Combinatorics. In this course, we attempt to solve
problems like:

In how many ways...

• can we pick 6 numbers from 1 to 15 so that no two are consecutive?

• can we climb a ladder if we move up either one or two steps at a time?

• can 7 balls be placed in 4 boxes if no box is to be left empty?

• can we give change of a pound?

As suggested by the title of the course, we will be mainly concerned with counting
problems, although on our way we will encounter algebraic and structural questions. The
first thing we learn about maths is to count, but as we shall see counting can become quite
tricky and requires techniques.

The course has two parts. The first one introduces the basic objects, ideas, and princi-
ples in enumeration. The second part is devoted to generating functions and their powerful
uses. The beginning of the course is sort of “linear”, since we will describe a good variety of
relatively simple objects; but those are not to be forgotten, since as we go our way into the
subject they will appear once and again under new lights and perspectives. Enumeration
is better understood by example; for this reason, we encourage visual and combinatorial
proofs, and the examples treated should be used as inspiration to solve further problems.

Notation. Unless otherwise stated, all sets considered will be finite; an n-set is a set
with n elements; a k-subset of a set is a subset with k elements. The set of the first n
integers, that is {1, 2, 3, . . . , n}, will be denoted by [n].

1 Subsets, multisets, and balls-in-bins

This chapter deals with choice problems that might be familiar from probability courses;
they are sometimes called “combinations” and “variations”, with or without “repetition”.
In this course we do not use this notation and we only refer to counting permutations,
subsets, multisets, etc...

1.1 Words and permutations

Let us start by looking at a very simple object.

Definition 1.1. A word over the alphabet X is a finite sequence of elements of X.

Example. Some words over the alphabet [5] are 123, 231, 125, 435, 443, . . .

Theorem 1.2. There are nk words of length k over an alphabet of n symbols.

3



Proof. We have n choices for the first letter, n choices for the second letter, and so on,
until we have n choices for the last letter. Hence, there are n · n · · ·n = nk words of length
k.

Words allow symbols to be repeated. Permutations are sequences where all elements
are different.

Definition 1.3. A permutation of a set X is a total linear ordering of the elements of X;
we represent it as x1x2 · · ·xn.

Example. The set [3] has 6 permutations: 123, 132, 213, 231, 312, 321.

Theorem 1.4. The number of permutations of an n-element set X is n!.

Proof. We have n choices for the first element x1. Once this is chosen, we have n−1 choices
for x2; then, n−2 choices for x3, and so on, until we have only one choice for the last element
xn. Therefore the total number of permutations of X is n·(n− 1)·(n− 2) · · · 2·1 = n!.

Definition 1.5. A k-permutation of a set X is a total linear ordering of a k-subset of X;
we represent it as x1x2 . . . xk.

Example. The set [3] also has 6 2-permutations: 12, 13, 21, 23, 31, 32, but it only has 3
1-permutations: 1, 2, 3.

Theorem 1.6. An n-set X has n!
(n−k)! = n(n− 1) · · · (n− k + 1) k-permutations.

Proof. We proceed as in the proof of Theorem 1.4. There are n choices for x1, n−1 choices
for x2, and so on, until we have n− k + 1 choices for xk.

The set of all permutations of X is denoted SX ; if X = [n], we simplify to the usual
notation from group theory: Sn. Permutations can not only be viewed as arrangements of
elements, but also as bijective maps from [n] onto X. If π is the permutation x1x2 · · ·xn, it
defines also a map π : [n] → X as π(i) = xi. The group Sn has a particularly rich structure
that has been extensively studied; the algebraic point of view does not have an important
role for our purposes, but some basic results on representing permutations as products of
cycles will be needed later in the course.

1.2 Subsets and binomial numbers

This section is concerned with the number of ways in which we can select a k-element
subset of an n-set (regardless of the order of the elements, in opposition to permutations).
We start by examining some properties of this number and later we derive a formula for it.

Definition 1.7.
(
n
k

)
denotes the number of subsets of size k of [n]; or, equivalently, the

number of ways in which we can select k diferent elements from an n-element set.
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0 1

1 1 1

2 1 2 1

3 1 3 3 1

4 1 4 6 4 1

5 1 5 10 10 5 1

6 1 6 15 20 15 6 1

Table 1: Pascal’s Triangle.

The number
(
n
k

)
is read “n choose k” and is called a binomial number or a binomial

coefficient .

We start with some basic properties of binomial numbers. The first three follow directly
from the definition.

(1)
(
n
0

)
=

(
n
n

)
= 1

(2)
(
n
1

)
=

(
n

n−1

)
= n

(3)
(
n
k

)
=

(
n

n−k

)

The following is the key recurrence relation for binomial numbers.

(4)
(
n
k

)
=

(
n−1

k

)
+

(
n−1
k−1

)
for n > k > 1

Proof. We prove this equality by counting subsets of [n] according to whether or not they
include a fixed element, say n. Let A be a k-subset of [n]; in total there are

(
n
k

)
ways of

choosing A. If A does not include the element n, then A can be chosen in
(
n−1

k

)
ways; on

the other hand, if A does contain n, then the remaining k− 1 elements of A can be chosen
from [n− 1] in

(
n−1
k−1

)
ways.

The proof above is an example of what is called a combinatorial proof, in constrast to
algebraic proofs. It is often the case that a result can be proved in a variety of ways, some
of them using algebraic tools, some others based on bijections or on structural properties.
Of course all proofs are correct and valid, although in general combinatorial proofs tend to
be more beautiful and enlighting (and sometimes quite difficult to find!).

Recurrence (4) allows us to compute binomial numbers recursively; table 1 is usually
called Pascal’s triangle. In further sections we will encouter other combinatorial numbers
that satisfy similar relations that are proved using analogous ideas.

The following is Newton’s famous Binomial Theorem (from which binomial numbers
take their name).
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Theorem 1.8. (Binomial Theorem) For all integers n > 0,

(a + b)n =
n∑

k=0

(
n

k

)
akbn−k.

Proof. Write (a+ b)n as (a+ b)(a+ b) · · · (a+ b). To expand this product we have to choose
either an a or a b from each of the factors (a + b). Hence each term in the expansion is of
the form akbn−k for some k between 0 and n. This term will appear as many times as ways
of picking k a’s from the product above; this is the same as selecting k of the n factors
(a + b), and this can be done in

(
n
k

)
ways. Hence the coefficient of akbn−k in the binomial

is
(
n
k

)
.

As an application of the binomial theorem, we prove the following summation formulas
for binomial coefficients.

(5)
∑n

k=0

(
n
k

)
= 2n

(6)
∑n

k=0(−1)k
(
n
k

)
= 0

Proof. By the binomial theorem,

n∑

k=0

(
n

k

)
=

n∑

k=0

(
n

k

)
1k1n−k = (1 + 1)n = 2n,

and
n∑

k=0

(−1)k

(
n

k

)
=

n∑

k=0

(
n

k

)
(−1)k1n−k = (−1 + 1)n = 0.

This proof is an archetypical example of an algebraic proof ; the meaning of
(
n
k

)
plays

no role, only its algebaric properties. Equality (5) is equivalent to saying that the total
number of subsets of an n-set is 2n. If X is a set, we denote by P(X) the set of all subsets
of X (including ∅ and X). Hence, we have just proved that |P(X)| = 2|X|. Equality (6)
above can be phrased as “the number of subsets of even size of an n-set equals the number
of subsets of odd size”. Can you find combinatorial proofs for these equalities?

Finally we come to the well-known formula for binomial numbers. (By definition,
0! = 1.)

Theorem 1.9. (
n

k

)
=

n!
k!(n− k)!

, for n > k > 0.

Proof. A k-subset of an n-set can be seen as a k-permutation in which the order of the
elements does not matter. Hence, to pick a k-subset, just pick a k-permutation and forget
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about the order of the elements. Since there are n!/(n − k)! k-permutations and a set of
size k can be ordered in k! ways, we have that the total number of k-subsets of an n-set is

n!
(n−k)!

k!
=

n!
k!(n− k)!

.

1.3 Multisets and integer compositions

Up to now we have only considered the case of selecting distinct elements of a set (with or
without order). The next step is to allow repetitions in the elements we select. Towards
this end we have to introduce the concept of a multiset; a multiset is like a set, but we
allow each element to be repeated a (finite) number of times.

Definition 1.10. Let X be a set. A multiset M on X is a function ν : X → N such that
ν(x) is finite for all x ∈ X. The number ν(x) is the number of copies (or repetitions) of x,
and

∑
x∈X ν(x) is the size of M .

Example. Let X = {a, b, c, d}. The multiset corresponding to the function

ν(a) = 2 ν(b) = 0 ν(c) = 1 ν(d) = 3

can be represented as {a, a, c, d, d, d}. The size of M is 6.

We now count how many multisets of size k does an n-set have. In other words, in how
many ways we can pick k elements from an n-set if we can repeat elements.

Let x1, . . . , xn be the elements of X. To select a multiset of size k we have to select
non-negative numbers a1, . . . , an such that a1 + · · · + an = k. Here, ai is the number of
copies of xi we pick.

Theorem 1.11. The number of solutions to the equation

a1 + · · ·+ an = k, ai > 0, ai ∈ N,

is
(
k+n−1

k

)
. In other words, an n-set has

(
k+n−1

k

)
multisets of size k.

Proof. The problem is the same as finding the number of ways of placing k undistiguishable
balls in n numbered boxes (ai represents then the number of balls in box i). Put the k
balls in a row.

• • • • • • • • •
To represent the boxes we use vertical bars |, meaning the separation between two consec-
utive boxes. Hence we need n− 1 bars. A distribution of the balls in the boxes is then an
arrangement of bars and balls, such as

• | | • •| • • • • • • |
In this arrangement we have five boxes, of which the first has one ball, the second and the
last ones are empty, the third has two balls, and the fourth has six balls. So, in total we
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have k + n− 1 positions that can be either • or |, and k of the positions are •. Since there
is no further restriction, the solution is the number of ways of selecting k elements from a
set of k + n− 1, and therefore the theorem follows.

Multisets are strongly related to integer compositions.

Definition 1.12. A composition of an integer n is an expression of n as an ordered sum
n = n1 + n2 + · · ·+ nk of strictly positive integers.

Example. Let us find all compositions of the first integers.

1

2 = 1 + 1

3 = 2 + 1 = 1 + 2 = 1 + 1 + 1

4 = 3 + 1 = 1 + 3 = 2 + 2 = 2 + 1 + 1 = 1 + 2 + 1 = 1 + 1 + 2 = 1 + 1 + 1 + 1

Let c(n) be the number of compositions of the integer n and let ck(n) be the number of
compositions of n in exactly k parts. The example above suggests that c(n) = 2n−1. We
shall prove this by finding first a formula for ck(n).

Theorem 1.13. The number of compositions of n in k parts is ck(n) =
(
n−1
k−1

)
.

The total number of compositions of n is 2n−1.

Proof. Observe that ck(n) is the number of solutions to the equation n1 + · · · + nk = n
with ni > 1. We proceed as in the proof of Theorem 1.11: we have to distribute n balls
in k boxes, but now no box can be left empty. In terms of the balls and bars diagram,
we have n balls • and k − 1 separations | with the extra condition that no two bars can
be consecutive. Hence, between any two consecutive • we can place at most one |. Hence,
from the n− 1 spaces between two • we have to select k − 1 to put a |. This can be done
in

(
n−1
k−1

)
ways.

The formula for c(n) is found by summing all the ck(n) and applying the binomial
theorem.

c(n) = c1(n) + c2(n) + · · ·+ cn(n) =
n∑

k=1

(
n− 1
k − 1

)
=

n−1∑

j=0

(
n− 1

j

)
= 2n−1

Our proof for the formula c(n) = 2n−1 is again algebraic, but there are also combina-
torial proofs. Try to find one (there are several, but one follows nicely using balls and bars
diagrams as above).
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1.4 Balls-and-bins and multinomial numbers

Suppose we have m numbered balls that we want to place in r numbered bins. In how
many ways can this be done if we do not impose any extra condition?

We have r choices for where to put ball 1; for ball 2 we have again r choices; and again
r choices for each of the balls 3 to m. Hence, in total we have r·r · · · r = rm possibilities.

Now suppose that we are given the number of balls that must go into each of the bins,
that is, we have numbers m1, . . . , mr so that bin i has to contain mi balls. (Implicit in the
definition is that m1 + m2 + · · ·+ mr = m.)

Let us count the number of ways of placing the balls by counting the number of possi-
bilities for each bin. In bin 1 we have to put m1 balls, so there are

(
m
m1

)
choices. Bin 2 must

contain m2 balls, but of course we cannot choose among the ones that we have already put
in bin 1. Hence, there are

(
m−m1

m2

)
choices. Similarly, we have

(
m−m1−m2

m3

)
choices for bin

3, and so on, until the last bin. Thus the number of ways of placing m balls in r bins with
mi balls in bin i is

(
m

m1

)(
m−m1

m2

)(
m−m1 −m2

m3

)
· · ·

(
m−m1 − · · · −mr−1

mr

)
=

m!
m1!(m−m1)!

(m−m1)!
m2!(m−m1 −m2)!

(m−m1 −m2)!
m3!(m−m1 −m2 −m3)!

· · · (m−m1 − · · · −mr−1)!
mr!0!

=

m!
m1!m2! · · ·mr!

.

This number is denoted by
(

m
m1,m2,...,mr

)
and it is called a multinomial number . Notice

that when r = 2 we recover the usual formula for binomial numbers
(

m

m1,m2

)
=

m!
m1!m2!

=
(

m

m1

)
=

(
m

m−m1

)
=

(
m

m2

)
.

Indeed, to place m balls in two bins such that the first contains m1 balls and the other
m2 = m−m1 balls, it is enough to choose which balls go into the first bin, or which ones
go into the second bin.

Analogous to the binomial theorem, we have the multinomial theorem.

Theorem 1.14.

(x1 + x2 + · · ·+ xr)m =
∑

m1,m2,...,mrP
mi=m,mi>0

(
m

m1,m2, . . . , mr

)
xm1

1 xm2
2 · · ·xmr

r

Proof. The proof follows the same idea as the proof of the binomial theorem and it is left
as an exercise.

Observe that setting xi = 1 for all i in the binomial theorem we recover the fact that
the total number of ways of placing m balls in r bins, regardless of the number of balls in
each bin, is rm.
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1.5 Mappings

Many of the results in this section can be phrased in terms of maps. Let F(n,m) be the
set of all mappings from [n] to [m]. The following counting results are simple applications
of the principles of this section.

• |F(n,m)| = mn

• For n 6 m, F(n,m) contains m!/(m− n)! injective maps.

• There are
(
n
k

)
maps in F(n, 2) such that the preimage of 1 is a set of size k.

• The number of maps f ∈ F(n,m) such that f(1) < f(2) < · · · < f(n) is
(
m
n

)
.

2 The Principle of Inclusion and Exclusion

The Principle of Inclusion and Exclusion (PIE) is a very useful tool to count sets that can
be expressed as a union or an intersection of simpler sets. The idea is to generalize the
well-known formula to compute the cardinality of a union: |A ∪B| = |A|+ |B| − |A ∩B|.

For the case of three sets it is also easy to find a formula by inspection:

A

B

C

|A ∪B ∪ C| = |A|+ |B|+ |C| − |A ∩B| − |A ∩ C| − |B ∩ C|+ |A ∩B ∩ C|.

As we see, to compute the size of the union we sum the sizes of the components,
substract the intersections of pairs, and sum back the size of the triple intersection. The
Principle of Inclusion and Exclusion is a generalization of this idea.

Theorem 2.1. (PIE) Let A1, A2, . . . , An be subsets of a set X. Then

|A1 ∪A2 ∪ · · · ∪An| =
n∑

i=1

|Ai| −
∑

16i<j6n

|Ai ∩Aj |+
∑

16i<j<k6n

|Ai ∩Aj ∩Ak|

+ · · ·+ (−1)n−1|A1 ∩ · · · ∩An|.
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Proof. There are several proofs of the PIE. We choose one that has a more combinatorial
flavour (as an excersise, prove it by induction). We check that the formula counts each
element in A1 ∪A2 ∪ · · · ∪An just once. Let x be in A1 ∪A2 ∪ · · · ∪An; by relabelling the
sets if necessary, we can assume that x belongs to A1, A2, . . . , Ap but does not belong to
Ap+1, . . . , An. Then in the RHS of the above formula, x contributes with

p−
(

p

2

)
+

(
p

3

)
+ · · ·+ (−1)p−1

(
p

p

)
.

This equals
p∑

i=1

(−1)i−1

(
p

i

)
=

p∑

i=0

(−1)i−1

(
p

i

)
+ 1 = 0 + 1 = 1,

since we know that the sum of signed binomials is zero.

Before looking at the applications, let us start with some remarks. The PIE is stated
in terms of unions, but can also be used to count intersections. Indeed,

|A1 ∩A2 ∩ · · · ∩An| = |(Ac
1 ∪Ac

2 ∪ · · · ∪Ac
n)c| = |X| − |Ac

1 ∪Ac
2 ∪ · · · ∪Ac

n|,

where Bc stands for the complement of the set B in X. Now, using PIE,

|A1 ∩ · · · ∩An| = |X| −
n∑

i=1

|Ac
i |+

∑

16i<j6n

|Ac
i ∩Ac

j |+ · · ·+ (−1)n|Ac
1 ∩ · · · ∩Ac

n|.

One of the main tricks in using PIE is to choose the sets Ai suitably so that computing
the intersections |Ai1 ∩ · · · ∩Aik | is feasible. It is often the case that |Ai1 ∩ · · · ∩Aik | does
not depend on the Aij but only on k, the number of sets in the intersection. In this case
the PIE has a simpler form. Let Ak denote the size of the intersection of any k of the Ai.
Then,

|A1 ∪A2 ∪ · · · ∪An| = nA1 −
(

n

2

)
A2 +

(
n

3

)
A3 + · · ·+ (−1)n−1An.

The rest of this section is devoted to examples of application of the PIE.

Example. One of the classic applications of the Principle of Inclusion and Exclusion is
the derangement problem.

Suppose n people leave their coats at the cloakroom of a theater. At the end of
the play, the attendant gives the coats back without looking at the tickets. Which
is the probability that nobody gets their own coat?

Let us identify the coats with the integers from 1 to n. Each way of giving back the
coats is a permutation of [n]. For instance, the permutation 123 . . . n represents the case
that each person gets back their own coat. Let π be a permutation of [n]. If for all i we have
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π(i) 6= i, then nobody gets their own coat back. We call such permutations derangements.
Then the probability asked is

number of derangements of [n]
n!

.

Hence our goal is to compute the number of derangements of [n]; we denote the set of
derangements by Dn and its cardinality by dn.

Let Sn be the set of the n! permutations of n elements and for each i with 1 6 i 6 n
let Ai be the subset of all permutations π such that π(i) = i. By the remarks above, we
have that

Dn = Ac
1 ∩Ac

2 ∩ · · · ∩Ac
n = Sn − (A1 ∪A2 ∪ · · · ∪An).

Hence,
dn = n!− |A1 ∪A2 ∪ · · · ∪An|,

and by PIE

dn = n!−
n∑

i=1

|Ai|+
∑

16i<j6n

|Ai∩Aj |−
∑

16i<j<k6n

|Ai∩Aj ∩Ak|+ · · ·+(−1)n|A1∩· · ·∩An|.

The only thing left now is to count the sizes of the intersections.

• |Ai| = |{π ∈ Sn|π(i) = i}| = (n− 1)!, since the element i is fixed and we can permute
the remaining n− 1 in any way. Note that this is independent of the element i.

• |Ai ∩Aj | = |{π ∈ Sn|π(i) = i, π(j) = j}| = (n− 2)!, since two elements are fixed and
the remaining n− 2 can be permuted arbitrarily. Again, the result is the same for all
pairs i, j.

And in general,

• |Ai1 ∩Ai2 ∩ · · · ∩Aik | = (n− k)!, for 1 6 i1 < i2 < · · · < ik 6 n.

Therefore,

dn = n!−
n∑

i=1

(−1)i

(
n

i

)
(n− i)! = n!

n∑

i=0

(−1)i

i!
.

Hence, the probability asked is
∑n

i=0
(−1)i

i! . Does this probability have a limit as n

tends to infinite? Recall the series expansion for the exponential function ex =
∑

i>0
xi

i! ;
this series converges for all real values of x. Hence, as n →∞, the probability that nobody
gets their own coat gets closer to e−1 ∼ 0.37; actually, the rate of convergence is really fast,
since the absolute error is bounded by 1/(n + 1)!.
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Example. Euler’s φ function.

Recall from elementary number theory the definition of the function φ of Euler. Given
a positive integer n, φ(n) is the number of integers smaller than n that are relatively prime
to n (including 1). For instance,

φ(2) = |{1}| = 1, φ(3) = |{1, 2}| = 2, φ(4) = |{1, 3}| = 2, φ(5) = |{1, 2, 3, 4}| = 4.

Note that if n is prime, then φ(n) = n− 1, since all integers smaller than n are relatively
prime to n. Our goal is to find a formula for φ(n) for any integer n. We assume that we
have the decomposition of n into prime factors,

n =
r∏

i=1

pαi
i ,

where r is the number of distinct prime factors of n, the pi are the distinct prime factors,
and αi stands for their multiplicities.

The integers that are relatively prime with n are those that do not contain any of the
pi as a factor. This suggests to define Bi = {m : m < n, pi|m}, that is, the set of integers
smaller than n that are divisible by pi. Hence,

φ(n) = |Bc
1 ∩Bc

2 ∩ · · · ∩Bc
n|.

By PIE,

φ(n) = n−
r∑

i=1

|Bi|+
∑

16i<j6r

|Bi∩Bj |−
∑

16i<j<k6r

|Bi∩Bj ∩Bk|+ · · ·+(−1)r|B1∩· · ·∩Br|.

Again, the problem reduces to computing the intersections of Bi’s. It is not difficult to
show that

|Bi1 ∩ · · · ∩Bik | = |{m : m < n, pi1 · · · pik |m}| =
n

pi1 · · · pik

.

Note that in this case the size of Bi1 ∩ · · · ∩ Bik not only depends on k but also on the
specific sets we intersect. Putting this into the formula given by PIE, we have

φ(n) = n− n


 ∑

16i6r

1
pi


 + n


 ∑

16i<j6r

1
pipj


 + · · ·+ (−1)rn

1
p1 · · · pr

,

which can be written more compactly as

φ(n) = n

(
1− 1

p1

)(
1− 1

p2

)
· · ·

(
1− 1

pr

)
.

Example. The following is left as an excersise.

Show that the number of surjective maps from [n] onto [k] is

kn −
(

k

1

)
(k − 1)n +

(
k

2

)
(k − 2)n + · · ·+ (−1)k−1

(
k

k − 1

)
=

k∑

j=1

(−1)k−j

(
k

j

)
jn.
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3 Integer and set partitions; Stirling numbers

3.1 Integer partitions

We introduced compositions as ordered sums, hence regarding 2 + 1 and 1 + 2 as different
compositions of 3. But as partitions, we consider them the same.

Definition 3.1. A partition of an integer n is an expression of n as a sum of positive
integers

n = λ1 + λ2 + · · ·+ λk with λ1 > λ2 > · · · > λk > 1.

We usually denote this partition by (λ1, λ2, . . . , λk).

Example. Let us look at the partitions of the first integers.

1

2 = 1 + 1

3 = 2 + 1 = 1 + 1 + 1

4 = 3 + 1 = 2 + 2 = 2 + 1 + 1 = 1 + 1 + 1 + 1

5 = 4 + 1 = 3 + 2 = 3 + 1 + 1 = 2 + 2 + 1 = 2 + 1 + 1 + 1 = 1 + 1 + 1 + 1 + 1

We denote by p(n) the number of partitions of the integer n and by pk(n) the number of
partitions of n with k parts. From the example above we have p(1) = 1, p(2) = 2, p(3) = 3,
p(4) = 5, p(5) = 7. There are no explicit formulas known for p(n)1. But nevertheless
integer partitions are one of the nicest2 and richest objects in combinatorics.

We start with a recursion for the numbers pk(n).

Proposition 3.2. For n > k > 2,

pk(n) = pk−1(n− 1) + pk(n− k).

Proof. Let λ be a partition of n with k parts. We compute pk(n) by counting partitions
according to whether the last part λk is 1 or greater than 1.

• There are as many partitions of n with k parts and λk = 1 as partitions of n− 1 with
k − 1 parts.

• If λk > 1, then all parts are greater than 1, hence we can substract 1 from each part
and get a partition of n− k with k parts.

This recurrence and the trivial cases p1(n) = 1 and p0(0) = 1 allow us to compute the
numbers pk(n) (Table 2), in the same spirit as Pascal’s triangle.

14



n p(n) p1(n) p2(n) p3(n) p4(n) p5(n) p6(n) p7(n) p8(n)

1 1 1

2 2 1 1

3 3 1 1 1

4 5 1 2 1 1

5 7 1 2 2 1 1

6 11 1 3 3 2 1 1

7 15 1 3 4 3 2 1 1

8 22 1 4 5 5 3 2 1 1

Table 2: Integer partitions according to the number of parts.

A very useful way to represent partitions is by the means of Ferrers diagrams. For a
partition (λ1, λ2, . . . , λk), its Ferrers diagram is constructed by placing, left justified and
from top to bottom3, λ1 dots, λ2 dots, . . . , λk dots. This is better understood with an
example. The Ferrers diagram for the partition 5 + 3 + 1 + 1 is

• • • • •
• • •
•
•

.

As an excersise, interpret Proposition 3.2 above in terms of Ferrers diagrams.

Given a partition λ, its conjugate µ is the partition whose Ferrers diagram is obtained
by reflecting the Ferrers diagram of λ along the diagonal y = −x. That is, instead of reading
the diagram by rows, we read it by columns. For instance, the conjugate of (5, 3, 1, 1) is
(4, 2, 2, 1, 1).

• • • •
• •
• •
•
•

The following description of the conjugate of a partition follows easily by looking at the
Ferrers diagram.

1The asymptotic behaviour is known. If this sounds interesting, you may look at Thm. 15.7 of Van
Lint and Wilson, A course in combinatorics, Cambridge UP. You may want to wait until we have studied
generating functions though.

2Well, this is a personal opinion.
3This is the English notation. In French notation, Ferrers diagrams are drawn with the largest part at

the bottom.
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Proposition 3.3. If λ is a partition of n, then its conjugate µ is also a partition of n and

µj = |{i|λi > j}|.

The following result also follows by reasoning on Ferrers diagrams and conjugate par-
titions.

Proposition 3.4. The number of partitions of n with k parts equals the number of parti-
tions of n whose largest part is k.

A partition is called self-conjugate if it equals its conjugate; or, equivalently, if the
Ferrers diagram is symmetric with respect to its diagonal. For instance, (4, 3, 3, 1) is a
self-conjugate partition.

• • • •
• • •
• • •
•

Proposition 3.5. The number of self-conjugate partitions of n equals the number of par-
titions of n all whose parts are odd and distinct.

Proof. We give a proof by picture. We define a bijection between self-conjugate partitions
and partitions whose parts are odd and distinct, see Figure 1.

Figure 1: Bijection between self-conjugate partitions and partitions all whose parts are odd
and different.

This bijection can be defined formally in the following way. Let (λ1, . . . , λt) be a self-
conjugate partition. Consider the partition given by µi = 2(λi− (i− 1))− 1 for i such that
λi > i− 1. Check that all parts of µ are odd and different.

Conversely, given a partition (µ1, . . . , µs) with all parts odd and different, define λj =
(µj + 1)/2 + (j − 1) for 1 6 j 6 s. For k > s + 1, let λj = |{λi : i 6 s, µi > j}| (as long as
this is non-zero). The partition λ is self-conjugate.
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For the moment, we finish our discussion about partitions with a quite surprising result.
We delay its proof until we develop some generating function tools later in the course. But
of course you are allowed (and encouraged) to think about a combinatorial proof4.

Theorem 3.6. The number of partitions of n into odd parts is the same as the number of
partitions of n into different parts.

3.2 Set partitions

One of the first questions we studied was choosing a k-subset of an n-set. Observe that
picking a subset A of a set X is the same as partitioning X into two disjoint subsets, A
and Ac. So we can ask the question: in how many ways can we partition an n-set X into
two disjoint non-empty subsets? (By a partition of X into two subsets we mean picking
A and B such that A ∩ B = ∅ and X = A ∪ B.) The answer is quite simple. We have
2n − 2 choices for the first subset, say A (∅ and X are not valid choices), and once A is
determined, we have that B = Ac. Observe though that the order of A and B is irrelevant,
hence we have to divide by 2 and the result is (2n − 2)/2 = 2n−1 − 1. We now generalize
these ideas to partitions of sets into k blocks.

Definition 3.7. A partition of a set X is a decomposition of X of the form X = A1∪· · ·∪Ak

with Ai 6= ∅ for all i and Ai ∩Aj = ∅ for all i 6= j. The sets Ai are called the blocks of the
partition. Note that partitions are defined regardless of the order of the blocks.

Example. Let us list all possible partitions of the sets [1], [2] and [3].

[1] = {1}
[2] = {1, 2} = {1} ∪ {2}
[3] = {1, 2, 3} = {1, 2} ∪ {3} = {1, 3} ∪ {2} = {1} ∪ {2, 3} = {1} ∪ {2} ∪ {3}

The number of partitons of an n-set into k blocks is denoted by
{

n
k

}
and it is called

a Stirling number of the second kind5. (An alternative notation, though less common
nowadays, is S(n, k).) The total number of partitions of an n-set is denoted by B(n) and
it is called a Bell number . By definition, B(n) =

∑n
k=1

{
n
k

}
.

Example. The following values of Stirling and Bell numbers are easily deduced or com-
puted (n > 1).

{
0
0

}
= 1

{
n

0

}
= 0

{
n

1

}
= 1

{
n

2

}
= 2n−1 − 1

{
n

n− 1

}
=

(
n

2

) {
n

n

}
= 1

B(1) = 1 B(2) = 2 B(3) = 5 B(4) = 15

Like the number of integer partitions, Stirling numbers of the second kind satisfy a
linear recurrence that allows an easy recursive computation.

4Or cheat by reading Section 3.3 of Stanton and White, Constructive Combinatorics, Springer, 1986.
5The first kind will appear soon.
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n
{

n
1

} {
n
2

} {
n
3

} {
n
4

} {
n
5

} {
n
6

}
B(n)

1 1 1

2 1 1 2

3 1 3 1 5

4 1 7 6 1 15

5 1 15 25 10 1 52

6 1 31 90 65 15 1 203

Table 3: Stirling numbers of the second kind and Bell numbers.

Proposition 3.8. For n > k > 1,
{

n

k

}
=

{
n− 1
k − 1

}
+ k

{
n− 1

k

}
.

Proof. We count partitions of [n] according to whether {n} is a block or not.

• If {n} is a block of the partition, the remaining n−1 elements have to be partitioned
into k − 1 blocks, hence there are

{
n−1
k−1

}
choices.

• If {n} is not a block, the element n is in one of the k blocks together with some other
elements. Partition first the set [n − 1] into k blocks, and then choose any of the k
blocks and adjoin n to it. We have

{
n−1

k

}
choices for the partition, and k choices for

the block that contains n.

This recurrence can be used to compute some values of Stirling and Bell numbers
(Table 3).

Bell numbers can also be computed recursively, although in this case the recurrence
involves all previous terms.

Proposition 3.9.

B(n + 1) =
n∑

k=0

(
n

k

)
B(k)

Proof. We count partitions of [n+1] according to the size of the block that contains n+1.
Say that the block containing n + 1 has size j, for some j with 1 6 j 6 n + 1. There are(

n
j−1

)
choices for the other elements of the block, and once this is chosen, the remaining

n+1−j elements have to be partitioned, which can be done in B(n+1−j) ways. Therefore,

B(n + 1) =
n+1∑

j=1

(
n

j − 1

)
B(n + 1− j) =

n+1∑

j=1

(
n

n− j + 1

)
B(n + 1− j) =

n∑

k=0

(
n

k

)
B(k).
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There is actually an explicit formula for Stirling numbers of the second kind based in
a correspondance between set partitions and surjective mappings. Let f be a surjective
map from [n] to [k]. The sets f−1(1), f−1(2), . . . , f−1(k) form a partition of [n] (since f
is surjective, none of these sets is empty). Observe that this correspondance gives each
partition into k blocks a total of k! times, since switching the preimages gives the same
partition but a different map. Hence, k!

{
n
k

}
is the number of surjective maps from [n] to

[k], which we already know. Therefore,

{
n

k

}
=

1
k!

k∑

j=1

(−1)k−j

(
k

j

)
jn.

3.3 Decomposition of permutations into disjoint cycles

Finally, we briefly discuss the decomposition of permutations into disjoint cycles and Stir-
ling numbers of the first kind.

Usually we write a permutation π of [n] as an ordered sequence a1a2 . . . an of the
numbers {1, 2, . . . , n}. A permutation can be viewed as a bijection from [n] onto itself,
defined by π(i) = ai. For instance, 23541 denotes the permutation 1 → 2, 2 → 3, 3 → 5,
4 → 4, 5 → 1. Another way of writing permutations is the disjoint cycle notation6. The
permutation above in disjoint cycle notation is (1235)(4). Each permutation can be written
uniquely as a product of disjoint cycles up to the order of the cycles and the cyclic order
of the elements in each cycle (a cycle of length k can be written in k ways).

We associate with each permutation π of Sn an n-tuple (c1, c2, . . . , cn), where ci is the
number of cycles of length i in the disjoint cycle decomposition of π. This n-tuple is called
the type of the permutation. The permutation of our example has type (1, 0, 0, 1, 0).

Proposition 3.10. The number of permutations of type (c1, c2, . . . , cn) is

n!
c1! · · · cn!1c12c2 · · ·ncn

Proof. Let π = x1x2 · · ·xn be any permutation of [n]. Parenthesize the word π so that the
first c1 cycles have length 1, the next c2 have length 2, and so on. The result is the disjoing
cycle notaion of a permutation of cycle type (c1, c2, . . . , cn). But this procedure gives the
same permutation several times. Let us count how many times a permutation of cycle type
(c1, c2, . . . , cn) will appear. First, each cycle of length c can be written in c different ways;
so just taking into account this, each permutation is repeated 1c12c2 · · ·ncn times. But the
relative order of the cycles of the same length is irrelevant, ie, the c1 cycles of length 1 can
be ordered in c1! ways, the c2 cycles of length 2 in c2! ways, etc. . . Hence, each permutation
is counted c1!c2! · · · cn!1c12c2 · · ·ncn times, hence the formula.

If instead of the type of a permutation we are only interested in the number of cycles
in its decomposition, we obtain Stirling numbers of the first kind.

6See any basic group theory book if you are not familiar with this.
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Definition 3.11. The number of permutations of [n] whose cycle decomposition contains k
cycles is denoted by

[
n
k

]
and its called an Stirling number of the first kind. (In old notation,

s(n, k).)

Clearly
[
n
n

]
= 1, since the only permutation in Sn that decomposes as n cycles is the

identity (all cycles must have length one). The number
[
n
1

]
counts permutations that decom-

pose as a unique cycle, hence permutations that are cycles; their cycle type is (0, . . . , 0, 1),
and by the previous result there are (n− 1)! of them. It is also easy to determine

[
n

n−1

]
; if

we have n−1 cycles, the cycle type must be (n−2, 1, 0, . . . , 0), hence
[

n
n−1

]
= n!

2!(n−2)! =
(
n
2

)
.

The sum over k of the Stirling numbers
[
n
k

]
should be the total number of permutations of

an n-element set, which we know is n!.

Like Stirling numbers of the second kind, the numbers
[
n
k

]
also satisfy a recurrence.

Proposition 3.12. For n > k > 1,
[
n

k

]
=

[
n− 1
k − 1

]
+ (n− 1)

[
n− 1

k

]
.

Proof. We count permutations according to whether n is a fix point or not (ie, according
to whether (n) is a cycle of the decomposition).

• If (n) is a cycle, the remaining n − 1 integers give a permutation with k − 1 cycles,
so this gives the term

[
n−1
k−1

]
.

• If (n) is not a cycle, then the element n is in a cycle of length at least 2. Take a
permutation π ∈ Sn−1 with k cycles; then we can insert the element n after any of
the numbers 1, 2, . . . , n − 1 in the disjoint cycle decompostion of π. This yields a
permutation in Sn in which n is not a fix point. So there are

[
n−1

k

]
choices for the

permutation and n− 1 choices for the position in which to insert n.

We can now use this recurrence to generate a table of Stirling numbers of the first kind
(Table 4).

4 Generating functions and recurrences

Up to this point, our answers to enumerative problems have consisted only of closed for-
mulas, such as c(n) = 2n−1. But as we have seen in the case of partitions, these closed
formulas are not always easy to find, if known. We have also studied some problems by
means of recurrences, that do not provide closed formulas but allow us to compute as many
terms as we like. These and the following sections deal with another way of expressing the
result of a counting problem, namely generating functions. With them we shall be able
to give more information about old and new counting sequences, and solve a variety of
problems that were out of reach with the basic techniques of the previous chapters.
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n
[
n
1

] [
n
2

] [
n
3

] [
n
4

] [
n
5

] [
n
6

]

1 1

2 1 1

3 2 3 1

4 6 11 6 1

5 24 50 35 10 1

6 120 274 225 85 15 1

Table 4: Stirling numbers of the first kind.

Let us start by formalizing our goals. Given a problem, the answer we look for is a
sequence of numbers a0, a1, a2, . . ., such as 1, 1, 2, 3, 5, 7, 11, 15, . . . if we are counting integer
partitions. To this sequence we associate a generating function.

Definition 4.1. The (ordinary)7 generating function (OGF) of a sequence {an}n>0 is the
formal power series

a0 + a1z + a2z
2 + a3z

3 + · · · =
∑

n>0

anzn.

By a “formal power series” we mean that the variable z does not take any value and we
regard it just as a “mark” (we will formalize this soon). We do not care about convergence
issues either. So in principle it does not seem that a generating function is going to be
more useful than a recurrence. . .

Example. Fix some integer m. The sequence {(m
k

)}k>0 has as generating function

∑

k>0

(
m

k

)
zk =

(
m

0

)
+

(
m

1

)
z +

(
m

2

)
z2 + · · ·+

(
m

m

)
zm = (1 + z)m.

So in this case, the generating function is not an infinite series but a polynomial.

Example. Consider the sequence 1, 1, 1, 1, . . . Although it does not seem combinatorially
atractive, this sequence and its generating function will be of extreme importance to us.
The generating function is

F (z) = 1 + z + z2 + z3 + · · ·
Observe that F (z) − zF (z) = 1, hence F (z) = 1

1−z . This is the well-known formula for
the sum of a geometric series; as mentioned before, in this context we do not care about
analytic or convergence properties of F (z). By making the substitution z → az, one shows
that the generating function for the sequence 1, a, a2, a3, . . . is 1

1−az .

We will soon justify that the preceeding operations on formal power series are well
defined and sound, but before doing so we examine other examples and start exploring the
spirit of “generatingfunctionology”, as it is sometimes called8.

7The other class of generating functions that we will study in this course are exponential generarting
functions.

8Herbert S. Wilf, Generatingfunctionology, Academic Press, 1990.
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Let a(z) be the OGF of the sequence {an}n>0, that is a(z) =
∑

n>0 anzn. We might
want to express in terms of a(z) some slight variations of this series, such as

∑
n>0 an−1z

n

or
∑

n>0 nanzn. After some thought, the following table is derived (Table 5).

series closed form for OGF∑
n>0 anzn a(z)∑

n>1 an−1z
n za(z)∑

n>0 an+1z
n a(z)−a0

z∑
n>0 an+kz

n a(z)−a0−a1z···−ak−1zk−1

zk∑
n>0 bnzn b(z)∑

n>0(an + bn)zn a(z) + b(z)

Table 5: Operations on OGF’s.

These rules can now be used to find the OGF of a sequence given by a recurrence
relation. For instance, consider the sequence defined by

a0 = 1, a1 = 1, an+2 = an+1 + an for n > 0

Multiply both sides of the recurrence by zn:

an+2z
n = an+1z

n + anzn

and sum over all n > 0:
∑

n>0

an+2z
n =

∑

n>0

an+1z
n +

∑

n>0

anzn.

By using the rules in the previous table, we get

a(z)− 1− z

z2
=

a(z)− 1
z

+ a(z).

Solving this equation for a(z) we deduce

a(z) =
1

1− z − z2
.

How can this generating function help us understand better the sequence given by the
recurrence relation?

Ideally, we would like to find a closed formula for the numbers an. In some situations,
like the present one, this is possible. First of all, we expand 1

1−z−z2 in partial fractions.

We first decompose the denominator in linear factors:

1− z − z2 = (1− αz)(1− βz).
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Equating the coefficients of the powers of z one finds

α =
1 +

√
5

2
, β =

1−√5
2

.

(α and β are the inverses of the roots of 1− z − z2.) Now we find constants A and B such
that

1
1− z − z2

=
A

1− αz
+

B

1− βz
=

A + B − (αA + βB)z
(1− αz)(1− βz)

.

By equating the powers of z we obtain the system of equations
{

A + B = 1;

αA + βB = 0.

whose solution is A = α
α−β , B = −β

α−β . Hence,

a(z) =
1

1− z − z2
=

1√
5

(
α

1− αz
− β

1− βz

)

Now recall that 1
1−az =

∑
n>0 anzn. Hence,

a(z) =
1√
5


∑

n>0

αn+1zn −
∑

n>0

βn+1zn


 .

By definition of a generating function, an is the coefficient of zn in a(z). Therefore, we
have that

an =
1√
5




(
1 +

√
5

2

)n+1

−
(

1−√5
2

)n+1

 .

By finding their generating function first, we have been able to find a formula for the
numbers an. These numbers an are called the Fibonacci numbers9. Imagine now that we
are not that interested in an exact formula for an, but rather we want to know aproximately
how fast Fibonacci numbers grow. Note that for large values of n, the term −(1−√5

2 )n+1

can be neglected, and actually will never be as large as 0.5. Hence,

an ∼ 1√
5

(
1 +

√
5

2

)n+1

.

Even for small n this approximation is extremely good (it will always be at most 0.5
off the true value; actually, since we know that an is an integer, we conclude that an is
the integer nearest to the approximate value). By using Maple10 we obtain the following
numerical results.

9Most combinatorics textbooks contain the problem of rabbit breeding that originally lead to Fibonacci
numbers.

10Or another computer algebra package.
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an 1 1 2 3 5 8 13 21

an ∼ 0.72 . . . 1.17 . . . 1.89 . . . 3.06 . . . 4.95 . . . 8.02 . . . 12.98 . . . 21.00 . . .

· · · 34 55 89 144

33.99 . . . 55.00 . . . 88.99 . . . 144.00 . . .

In other situations we will not be as lucky and a closed formula for the coefficients will
not be available. In those cases, there is still much that can be said, especially in terms of
asymptotic aproximations. Unfortunately, this issue goes further beyond the scope of this
course11.

4.1 Formal power series

The purpose of this section is to develop the theory of formal power series to provide a
valid framework in which to carry out our computations with generating functions.

Definition 4.2. A formal power series is an expression of the form a0+a1z+a2z
2+a3z

3+
· · · , where a0, a1, a2, a3, . . . are rational numbers12. The set of all power series is denoted
by Q[[z]].

Again, the variable z has to be interpreted as a “mark”. Observe that not all terms
need to be different from zero. For instance 4, 1+z, and z13 are formal power series. If f(z)
is a formal power series, we denote by [zn]f(z) the coefficient of zn in f(z). For example,
[z](1 + z) = 1, [z0](4 + z4) = 4, and [z](1 + z2) = 0. If a formal power series is called a(z),
we use the same letter for the coefficients: a0, a1, a2, . . .

We can define operations on formal power series as one would expect. Their sum is
defined as

a(z) + b(z) =
∑

n>0

(an + bn)zn.

The product is a bit trickier but also natural:

a(z)b(z) =
∑

n>0


 ∑

06i6n

aibn−i


 zn.

Observe that (1− z)(1 + z + z2 + · · · ) = 1. Hence it makes sense to write

1
1− z

= 1 + z + z2 + · · ·

Definition 4.3. We say that b(z) is the (multiplicative) inverse of a(z) if a(z)b(z) = 1.

Proposition 4.4. The formal power series a(z) has a multiplicative inverse if and only if
a0 6= 0.

11The interested reader will find countless examples in Flajolet and Sedgewick’s forecoming book Analytic
combinatorics, especially in the parts devoted to complex asymptotics. The preliminary version of the book
is available on-line at http://algo.inria.fr/flajolet/Publications/books.html.

12Actually, any other field as the real or complex numbers would do.
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Proof. Suppose first that a(z) has an inverse. Then there exists a formal power series b(z)
such that

(a0 + a1z + a2z
2 + · · · )(b0 + b1z + b2z

2 + · · · ) = 1.

By the definition of product of power series, we deduce that a0b0 = 1, hence that a0 6= 0.

Conversely, suppose now that a0 6= 0 and consider the equation

(a0 + a1z + a2z
2 + · · · )(b0 + b1z + b2z

2 + · · · ) = 1.

We show that this equation can be solved for the bn’s, and hence that a(z) has an inverse.
Expand the product and equate coefficients of z in both sides:

a0b0 = 1 ⇒ b0 =
1
a0

,

since a0 6= 0. Also,

a0b1 + a1b0 = 0 ⇒ b1 =
−a1

a2
0

,

a0b2 + a1b1 + a2b0 = 0 ⇒ b2 =
−a2a0 − a2

1

a3
0

,

and similary we can inductively find b3, b4, . . . Hence a(z) has a multiplicative inverse.

At this point we have endowed the set Q[[z]] with a sum and a product; it is easy
to check that these two opertions are associative and commutative, and that the sum is
distributive with respect to the product. Hence Q[[z]] is a commutative ring with unity.

The following is the binomial theorem for negative integer exponents.

Proposition 4.5. As formal power series, for integer k > 0

1
(1− z)k

=
∑

n>0

(
n + k − 1

n

)
zn

Proof.
1

(1− z)k
= (1 + z + z2 + z3 + · · · )k

The coefficient of zn above equals the number of ways of picking one power of z from each
of the k factors, such that the sum of the exponents is n. In other words, the coefficient of
zn is the number of solutions to the equation e1 + e2 + · · ·+ ek = n, with ei > 0. But we
know from Theorem 1.11 that this number is

(
n+k−1

n

)
.

Another operation on power series is composition. Given two power series a(z) and b(z),
their composition is the series a(b(z)) =

∑
n>0 an(b(z))n. But is this operation meaningful?

Each term an(b(z))n is well defined, but taking an infinite sum could lead to some problems.
Suppose that b0 6= 0. Then each term b(z)n contributes with a non-zero constant term bn

0 .
Hence the constant term of a(b(z)) is

∑
n>n bn

0 , and this sum may easily be divergent. To
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avoid this problem, we only consider composition of series with constant term equal to zero,
or such that a(z) is a polynomial. In this case, we have that

[zn]a(b(z)) =
n∑

k=0

[zn](akb(z)k).

Example. Take a(z) = 1/(1 − z) and b(z) = z2. Then a(b(z)) = 1/(1 − z2) = 1 + z2 +
z4 + z6 + · · ·

The formal derivative of the power series a(z) =
∑

n>0 anzn is the power series a′(z) =∑
n>0 nanzn−1. This formal derivate satisfies the usual rules with respect to sums, products,

quotients, composition, etc. . .

We use the familiar terminology from analysis to denote some power series. For instance,
we denote

∑
n>0

1
n!z

n by exp(z) and
∑

n>1
1
nzn by log( 1

1−z ). In analysis we have the equality
exp(log( 1

1−z )) = 1
1−z . Is this equality true at the level of formal power series? Here is

where we use some analysis. Observe that the series
∑

n>0
1
nzn converges for |z| < 1 and

the exponential series converges for all z. Hence the composition exp(log( 1
1−z )) converges

for |z| < 1. But if it converges, it should converge to the true value, that is, 1
1−z . So we

deduce that the series exp(log( 1
1−z )) and 1

1−z are the same in a neighbourhood of the origin.
But if they are the same in a no matter how small neighbourhood of the origin, they have
the same coefficients in their Taylor expansions, and hence they also agree as formal power
series.

This same idea can be used to prove the generalized binomial theorem for rational
exponents.

Proposition 4.6. For all a ∈ Q,

(1 + z)a =
∑

n>0

(
a

n

)
zn,

where
(

a
n

)
= a(a−1)(a−2)···(a−n+1)

n! .

So the working rule to remember with power series is that, although the variable plays
just a “mark” role and takes no value, things behave as our intuition from analysis suggests.

4.2 Linear recurrences

We have already seen several recurrences in this course. In this part we show how generating
functions can help solving recurrences. Mostly we will do this by example. But let us first
define recurrences formally.

Definition 4.7. A recurrence for a sequence {an}n>0 is a relation of the form

an+k = φ(an, an+1, . . . , an+k−1)

valid for all n > 0. The values a0, a1, . . . , ak−1 are the initial conditions of the recurrence,
and k is the order or the recurrence.
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For instance, the recurrence for the Fibonacci numbers has order 2.

Example. Find the number bn of binary words that do not have two consecutive zeros.

Let us start by computing the first values of bn. It is easy to check that b0 = 1 (the
empty word), b1 = 2 (the words 0 and 1), and b2 = 3 (01, 10, and 11). In order to find a
recurrence for bn, we have to somehow decompose a word with no two consecutive zeros
into smaller words. Suppose that w1w2 · · ·wn is a binary word with no two consecutive
zeros. We distinguish two cases. On the one hand, if wn = 1, then w1w2 · · ·wn−1 is also a
binary word with no two consecutive zeros. On the other hand, if wn = 0, then we must
have wn−1 = 1, and hence w1w2 · · ·wn−2 is a binary word with no two consecutive zeros.
Therefore,

bn = bn−1 + bn−2 for n > 2

or equivalently,
bn+2 = bn+1 + bn for n > 0.

Is this is the same recurrence as for Fibonacci numbers. Observe that a recurrence also
includes the initial conditions, and in this case they are different (b0 = 1, b1 = 2). We solve
the recurrence using the same method as for Fibonacci numbers. We multiply both sides
by zn and sum over all n > 0.

∑

n>0

bn+2z
n =

∑

n>0

bn+1z
n +

∑

n>0

bnzn

Let b(z) be the corresponding generating function. Applying the rules we deduce

b(z)− 1− 2z

z2
=

b(z)− 1
z

+ b(z),

and hence
b(z) =

1 + z

1− z − z2
.

Observe that the denominator is the same as we had for Fibonacci numbers, whereas the
numerator is different. As we shall see, it is always the case in dealing with linear recurrences
that the initial conditions determine the numerator and the recurrence determines the
denominator. By using the technique of partial fractions, we get to an explicit formula for
bn, namely

bn =
1 + α

α− β
αn − 1− β

α− β
βn,

where α = 1+
√

5
2 and β = 1−√5

2 . Observe that the asymptotic behaviour is the same as
for Fibonacci numbers. This is another general fact, that the recurrence determines the
growth rate, regardless of the initial conditions.

A recurrence is linear with constant coefficients if it is of the form

an+k + c1an+k−1 + c2an+k−2 + · · ·+ ckan = 0

for some rational numbers c1, c2, . . . , ck. Linear recurrences with constant coefficients have
very special generating functions. The following is a basic theorem whose proof is left as
an exercise (just mimic our procedure for solving recurrences).
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Theorem 4.8. Let {an}n>0 be a sequence. The following are equivalent.

• {an}n>0 satisfies a linear recurrence with constant coefficients an+k + c1an+k−1 +
c2an+k−2 + · · ·+ ckan = 0.

• Its generating function a(z) is of the form P (z)
1+c1z+c2z2+···+ckzk , where P (z) is a poly-

nomial in z of degree at most k − 1.

Generating functions that are of the form P (z)
Q(z) for some polynomials P (z), Q(z) are

called rational13. They are the simplest kind of generating functions, and they arise from
linear recurrences. If we have a sequence whose GF is rational, we can use the method of
partial fractions to find an explicit formula for the terms of the recurrence. Let us sketch
the procedure briefly.

We first decompose the denominator as Q(z) = (1 − α1z)d1(1 − α2z)d2 · · · (1 − αrz)dr .
That is, the α−1

i are the roots of Q(z) and the di are their multiplicities. By the theory
of partial fractions, we know that there exist complex numbers Ai,j for 1 6 i 6 r and
1 6 j 6 di such that

P (z)
Q(z)

=
A1,1

1− α1z
+

A1,2

(1− α1z)2
+ · · ·+ A1,d1

(1− α1z)d1
+

A2,1

1− α2z
+ · · ·+ Ar,dr

(1− αrz)dr

From this expression we want to extract the coefficient of zn. Recall that

1
(1− αz)d

=
∑

n>0

(
n + d− 1

n

)
αnzn.

Hence,

[zn]
P (z)
Q(z)

=
(

A1,1 + A1,2

(
n + 2− 1

n

)
+ · · ·+ A1,d1

(
n + d1 − 1

n

))
αn

1 +
(

A2,1 + · · ·+ A2,d2

(
n + d2 − 1

n

))
αn

2 + · · ·+
(

Ar,1 + · · ·+ Ar,dr

(
n + dr − 1

n

))
αn

r

So we have just proved one direction of the following theorem. The other direction
follows easily by working backwards.

Theorem 4.9. If the sequence {an}n>0 has a rational generating function P (z)
Q(z) with deg(P (z)) <

deg(Q(z)), then
an = P1(n)αn

1 + P2(n)αn
2 + · · ·+ Pr(n)αn

r ,

where α−1
1 , . . . , α−1

r are the roots of Q(z) and each Pi(n) is a polynomial of degree di − 1,
where di is the multiplicity of the root α−1

i . Conversely, every sequence with a general term
of this form has a rational generating function.

13In general, we will assume that deg(P (z)) < deg(Q(z)); if this is not the case, divide P (z) by Q(z)
and observe that by modifying a finite number of terms in our sequence we can assume that the generating
function is P ′(z)/Q(z) with deg(P ′(z)) < deg(Q(z)).
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Let us see how Theorems 4.8 and 4.9 work. The advantage is that we do not have to
carry out all the steps.

Example. Consider the recurrence an+3 = 4an+2 − 5an+1 + 2an, with initial conditions
a0 = 2, a1 = 2, a2 = 3. Since this is a linear recurrence with constant coefficients, we know
that its generating function is rational and it is of the form

P (z)
1− 4z + 5z2 − 2z3

,

where P (z) is a polynomial of degree at most 2. Now we apply the theory of rational gener-
ating functions to find a closed formula for an. First we need the roots of the denominator,
which are 1 and 2, with multiplicities 2 and 1, respectively. Then the an are of the form

P1(n)1n + P2(n)2n,

where P1 is a polynomial of degree 1 in n and P2 is a constant. Hence, an = (A+Bn)+C2n,
for some constants A,B, and C. We find these constants by using the initial conditions.

A + C = 2

A + B + 2C = 2

A + 2B + 4C = 3

This system gives A = C = 1 and B = −1. Hence, an = 1− n + 2n.

4.3 A non-linear recurrence: Catalan numbers

Consider the following path counting problem.

We have two types of steps: U = (1, 1) and D = (1,−1). In how many ways can
we go from (0, 0) to (2n, 0) using these steps and without crossing the horizontal
axis?

These paths are usually called Dyck paths. See Figure 2.

(0,0) (18,0)

Figure 2: A Dyck path.

Let us denote by Cn the number of such paths. The first values of Cn can be computed
by hand (Figure 3). Notice that C0 = 1 since there is one way of going from (0, 0) to (0, 0).

We now look for a way of decomposing the paths so that we can obtain a recurrence
(see Figure 4). Consider the first point where the path returns to the horizontal axis; this
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C = 53

1C =0

1C =1

C =2 2

.

Figure 3: Dyck paths of length at most 6.

point is of the form (2i, 0) for some i with 1 6 i 6 n. Now our path is split into two smaller
paths, one of length 2i and one of length 2(n− i). Observe that the first path, before the
first return, can be decomposed as UPD, where P is a path that does not go below height
1. Hence the number of paths of length 2n whose first return is at (2i, 0) is Ci−1Cn−i. Since
the first return can be in any point of the form (2i, 0) for i between 1 and n, we have that

Cn = C0Cn−1 + C1Cn−2 + · · ·+ Cn−1C0 =
n−1∑

i=0

CiCn−i−1,

which is valid for n > 1.

(0,0) (18,0)
(2i, 0)

C i−1
Cn−i

Figure 4: Decomposition of a Dyck path.

We change indices so that the recurrence is valid for n > 0:

Cn+1 =
n∑

i=0

CiCn−i,

and now we take generating functions:

C(z)− 1
z

= C(z)2.
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Solving this quadratic equation on C(z) we get

1±√1− 4z

2z
.

Which of the two solutions are we interested in? Observe that the expansion of the term√
1− 4z is

∑
n>0

(
1/2
n

)
(−4)nzn = 1 + · · · . Therefore, if we take the + sign above, the first

term of C(z) would be 1/z, and this is not a power series. Hence we have to take the −
sign. So,

C(z) =
1−√1− 4z

2z
.

Now we want to extract the cofficient of zn above to have a closed formula for Cn.

[zn]C(z) =
−1
2

[zn+1]
√

1− 4z =
−1
2

(−4)n+1

(
1/2

n + 1

)

Now, (
1/2

n + 1

)
=

1
2
−1
2 · · · −2n+1

2

(n + 1)!
=

(−1)n

4n

(2n− 1)!
(n + 1)!(n− 1)!

,

and finally

Cn = [zn]C(z) =
−1
2

(−4)n+1 (−1)n

4n

(2n− 1)!
(n + 1)!(n− 1)!

= · · · = 1
n + 1

(
2n

n

)
.

The numbers Cn are called Catalan numbers (although they first appeared in Euler’s
work). The first Catalan numbers are

1, 1, 2, 5, 14, 42, 132, 429, 1430, . . .

We will see that Catalan numbers are one of the most ubiquitous in combinatorics since
they count a very large variety of objects. The interested reader will find a challenge in
exercise 6.19 of Stanley’s Enumerative Combinatorics, Volume 2, where 66 different objects
enumerated by Catalan numbers are given.

Observe finally that the generating function for Catalan numbers is not rational. Gen-
erating functions that satisfy a polynomial equation are called algebraic.

4.4 The generating function for integer partitions

Among all quantities we have studied, the number of partitions p(n) seems to be one of
the most out of reach. But its generating function will prove to us more tractable. Our
goal is to find

∑
n>0 p(n)zn. Let us start by a simple case. Let p6k(n) be the number of

partitions of n all whose parts are k or less. We study first the GF for p61(n). Well, there
is just one partition of n all whose parts are 1, hence

∑

n>0

p61(n)zn =
1

1− z
.
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For k = 2, we claim that ∑

n>0

p62(n)zn =
1

1− z

1
1− z2

.

We first rewrite the RHS as

(1 + z + z2 + z3 + · · · )(1 + z2 + z4 + z6 + · · · ).
If we expand this product, we get terms of the form zi(z2)j for 0 6 i, j. This term is
encoding a partition of i+2j all whose parts are at most 2; namely, the partition containing
j 2’s and i 1’s. And all partitions arise in this way. Hence the claim is proved.

In the same way, one can prove that
∑

n>0

p63(n)zn =
1

1− z

1
1− z2

1
1− z3

.

The powers of z count the parts that are 1, the powers of z2 count parts that are 2, and
the powers of z3 count the parts that are 3.

How can we generalize this is we want to find the generating function for all partitions,
without any restriction on the size of the parts? The obvious candidate now is

∑

n>0

p(n)zn =
1

1− z

1
1− z2

1
1− z3

1
1− z4

· · · =
∏

i>0

1
1− zi

But does this infinite product make sense in terms of formal power series? It does, as far
as we understand that we pick only a finite number of terms that are different from 1.

Once we have understood how the generating function for partitions works, we can start
“playing” with it. Let us prove a result we mentioned before.

Theorem 4.10. The number of partitions of n into odd parts is the same as the number
of partitions of n into different parts.

Proof. We prove the equality by showing that the respective generating functions are equal.
The generating function for partitions into odd parts is

o(z) =
1

1− z

1
1− z3

1
1− z5

· · · =
∏

i>1

1
1− z2i−1

.

On the other hand, the generating function for partitions with different parts is

d(z) = (1 + z)(1 + z2)(1 + z3) · · · =
∏

i>1

(1 + zi),

since from each of the terms 1 + zi + (zi)2 + (zi)3 + · · · we can only pick either a 1 or a zi.

Observe that (1 + zi)(1− zi) = (1− z2i). Hence,

d(z) =
∏

i>1

1− z2i

1− zi
=

1− z2

1− z

1− z4

1− z2

1− z6

1− z3

1− z8

1− z4
· · · =

∏

i>1

1
1− z2i−1

= o(z),

as required.
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5 The symbolic method for unlabelled structures

Now we have the tools to approach generating functions in a more systematic way. Our
next goal is to provide a framework that allows us to find easily the generating functions
for the combinatorial objects we are interested in, avoiding as much as possible setting
up recurrences. Our approach mimics that of Flajolet and Sedgewick14, but due to time
restrictions we will only scratch the surface of their powerful method. As it has been the
case during all the course, we will develop most ideas by example. We need first to define
the objects we will deal with.

Definition 5.1. A combinatorial class A is a finite or denumerable set endowed with a
size function || such that

- for all α ∈ A, 0 6 |α| < ∞;

- the number of elements of a given size is finite.

For a combinatorial class A, its elements are denoted α and their sizes |α|. For each
n > 0, we denote by An the set of elements of size n, and an is |An|, that is, the number
of elements of size n. We say that {an}n>0 is the counting sequence of the combinatorial
class A, and a(z) =

∑
n>0 anzn is the OGF of the class A. Note the alternative definition

of a(z) as a(z) =
∑

α∈A z|α|. Let us get familiar with this concepts by examining some
examples.

Example. Let W0,1 be the set of binary words, ie, words over the alphabet {0, 1}. So

W0,1 = {ε, 0, 1, 00, 01, 10, 11, 000, 001, . . .},
where ε denotes the empty word (the word with no letter). Here the size of a word is the
number of letters, hence wn is the number of binary words with n letters. It is straightfor-
ward then that wn = 2n and the corresponding generating function is w(z) =

∑
n>0 2nzn =

1
1−2z .

Example. Let P be the set of all permutations of the set [n]. Hence,

P = {ε, 1, 12, 21, 123, 132, 231, 213, 312, 321, . . .}.
We know well that pn = |Pn| = n!, hence p(z) =

∑
n>0 n!zn. Note here that p(z), regarded

as an analytic series, does not converge for any value of z except 0, but from our formal
perspective this does not matter much.

Of course, our goal is to be able to find GF’s for classes much more complicated than
the ones described above, which we can already handle. Towards this aim, we need to
introduce some operations on combinatorial classes that translate into operations on gen-
erating functions. In this way, from a very simple set of tools we will be able to study quite
involved objects.

We first need to introduce two trivial combinatorial classes. One is the neutral class,
that consists of a unique element ε that has size zero. We have also the atomic class, that
contains a unique element ζ of size one. Their respective generating functions are, trivially,
1 and z.

14Analytic Combinatorics. Symbolic Combinatorics, preliminary version available on-line, see footnote 11.
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5.1 Constructions

Product. Let A and B be two combinatorial classes. Their product is defined as

C = A× B = {αβ : α ∈ A, β ∈ B},

having as size function |αβ| = |α| + |β|. (For notational economy, we write αβ instead of
(α, β).)

Example. Consider the classes W0,1 of binary words over {0, 1} and Wa,b of binary words
over {a, b}, where in both the size of an object is the number of letters of the word. Their
product has as elements

W0,1 ×Wa,b = {εε, εa, εb, 0ε, 1ε, 0a, 0b, 1a, 1b . . .};

we actually lighten notation by dropping the ε’s

W0,1 ×Wa,b = {ε, a, b, 0, 1, 0a, 0b, 1a, 1b . . .}.

Suppose now that we are given the GF’s a(z) and b(z) for A and B; our aim is to give
the GF for A× B.

c(z) =
∑

γ∈C
z|γ| =

∑

αβ∈A×B
z|αβ| =

∑

αβ∈A×B
z|α|+|β| =

(∑

α∈A
z|α|

)
∑

β∈B
z|β|


 = a(z)b(z)

Hence we have proved the following.

Proposition 5.2. The generating function for the product of two classes is the product of
their generating functions.

Example. Let us continue with the example ofW0,1 and Wa,b. Their respective generating
functions are

w0,1(z) = wa,b(z) =
1

1− 2z
;

therefore, the generating function for the product W = W0,1 ×Wa,b is

(
1

1− 2z

)2

=
∑

n>0

(−2
n

)
(−2)nzn.

By expanding the binomial coefficient,
(−2

n

)
=

(−2)(−3)(−4) · · · (−2− n + 1)
n!

= (−1)n (n + 1)!
n!

= n + 1.

Hence,
w(z) =

∑

n>0

(n + 1)2nzn.
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You may argue that we took a long route to get to something not that difficult to prove.
Indeed, there are (n + 1)2n words of length n that start with 0 and 1 and then continue
with a and b: pick any of the 2n words over {0, 1} and decide from which of the n + 1
positions we switch 0’s to a’s and 1’s to b’s. Hopefully, our next examples will show the
real power of the symbolic method.

Sum. Suppose again that A and B are two combinatorial classes; furthermore, assume
they are disjoint (if they are not, work with A× ε1 and B × ε2). Their sum is defined as

C = A+ B = {γ : γ ∈ A ∪ B}.

The size of an element γ is the size it had originally. The generating function for the sum
is, not surprisingly, the sum of the generating functions.

c(z) =
∑

γ∈A+B
z|γ| =

∑

γ∈A
z|γ| +

∑

γ∈B
z|γ| = a(z) + b(z).

Proposition 5.3. The generating function of the sum of two classes is the sum of the
respective generating functions.

Now that we have sums and products, we can study more involved objects.

Example. (Triangulations of a polygon.) Given a regular n-gon, we are interested in
counting the number of triangulations it has. Let us denote by T the combinatorial class
of triangulations of polygons, where the size of a triangulation is the number of triangles
it has. Then t0 = 1, t1 = 1, t2 = 2 and t3 = 5 (see Figure 5). (Do these numbers sound
familiar?)

Figure 5: Polygon triangulations.

Consider that the vertices of an n-gon are labelled 1 to n counterclockwise. We can
decompose a triangulation as follows. Consider the triangle that contains the side 12; this
we call the root triangle. To the left and right of the root triangle, the polygon is split
into two smaller polygons (which may consist of just one side). Each of these two smaller
polygons is triangulated in turn (see Figure 6).
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1 2

R

Figure 6: Decomposition of a polygon triangulation.

Hence, a triangulation of a polygon is either empty (if the polygon is just an edge),
or can be decomposed as a triangulation, followed by a root triangle, followed by another
triangulation. Therefore,

T = ε + T ζT ,

where ζ denotes the root triangle. Now we can translate this combinatorial specification
into generating functions:

t(z) = 1 + t(z)zt(z).

Hence, t(z) satisfies the equation t(z) = 1+ zt(z)2, which we solve and get t(z) = 1−√1−4z
2z .

Hence Catalan numbers again! (Actually, this derivation was first made by the Swiss
Leonard Euler, but the numbers bear the name of the Belgian Eugène Catalan). This is an
example of a recursive specification of a combinatorial class, since we expressed the class
T in terms of itself.

Sequence. Let A be a combinatorial class. The sequence of A is the class defined by

S(A) = ε +A+A×A+A×A×A+ · · ·

Is it indeed a combinatorial class? How many objects there are of size n? To count objects
of size n in S(A), we need to know how many objects of size n there are in Ai = A× i· · · ×A.
The size of an object in Ai is the sum of the sizes of its i components. If all objects in
A have size at least one, then the objects in Ai have size at least i, and hence the terms
of the form Aj for j > n never give rise to objects of size n. Thus, there is only a finite
number of objects of size n. But note that if there are objects in A of size 0, then we may
have objects of size n in all of Ai, so in total an infinite number of them, contradicting the
definition of combinatorial class. Therefore, we only consider the sequence construction of
classes that do not have elements of size zero.

Now for the generating function; by applying the rules for sums and products we obtain

s(z) = 1 + a(z) + a(z)2 + a(z)3 + · · · = 1
1− a(z)

.

Proposition 5.4. The generating function for the sequence of a class whose generating
function is a(z) is 1

1−a(z) .
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Example. Let us examine again the simple example of binary words over {0, 1}. Such a
word is nothing but a sequence of 0’s and 1’s. Hence,

W0,1 = S({0, 1}) ⇒ w(z) =
1

1− 2z
,

since the GF for the class {0, 1} is 2z.

Example. Consider the class U of words over {0, 1} that do not have k consecutive zeros.
Let us start by the case k = 2. A word in U can end in 1 or 0, but if it ends in 0 the
previous letter must be 1 (unless the word is the word 0), so we can say that words in U
end in either 1 or 10. Hence the following equation holds

U = ε + {0}+ U × {1}+ U × {10}.

Translating this into GF’s,

u(z) = 1 + z + zu(z) + z2u(z) ⇒ u(z) =
1 + z

1− z − z2
,

which is almost like the GF for Fibonacci numbers, except that the denominator has an
extra power of z. If now we want to consider the case of not having k consecutive zeros,
the possible endings of a word are 1, 10, 100, . . ., 10 · · · 0, where this last word has k − 1
zeros at the end; in addition we have to consider the cases of words of length less than k
consisting only of 0’s. Hence,

U = ε+ {0}+ {00}+ · · ·+ {0 · · · 0}+U ×{1}+U ×{10}+U ×{100}+ · · ·+U ×{10 · · · 0}.

And for the generating function,

u(z) = 1 + z + z2 + · · ·+ zk−1 + (z + z2 + z3 + · · ·+ zk)u(z);

hence,

u(z) =
1 + z + · · ·+ zk−1

1− z − z2 − · · · − zk
.

The coefficients of these generating function can be seen as a generalization of Fibonacci
numbers.

Let us examine another way of treating the class U . We can think of a word with no k
consecutive 0’s as a sequence of 1’s, each followed by at most k − 1 0’s. This gives

U = {ε + 0 + 00 + · · ·+ 0
(k−1)· · · 0}S(1× {ε + 0 + 00 + · · ·+ 0

(k−1)· · · 0}).

Translating into GF’s,

u(z) = (1 + z + · · ·+ zk−1)
1

1− z(1 + z + · · ·+ zk−1)
,

which leads again to the same generating function, of course.

There are other constructions for combinatorial classes, but for our purposes sums,
products, and sequences suffice.
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5.2 Compositions revisited

Let C be the class of integer compositions, where a composition of n has weight n. Re-
call that we can represent a composition as a dots and bars diagram; for instance, the
composition 2 + 1 + 3 + 1 of 7 will look like

• • | • | • • • | • .

From this representation we see that a composition is a sequence of strictly positive integers.
So, C = S(I), where I is the class of strictly positive integers. To derive the GF for
compositions, we need first the GF for I. One of the many ways of doing this is thinking
that an integer is a sequence of dots, each with weight 1; since we only want positive
integers, we have I = S(•)− ε. Hence,

i(z) =
1

1− z
− 1 =

z

1− z
.

Now for the compositions, C = S(I) implies

c(z) =
1

1− z
1−z

=
1− z

1− 2z
.

From this is easy to recover the result that c(n) = 2n−1. Indeed,

1− z

1− 2z
=

1
1− 2z

− z

1− 2z
=

∑

n>0

2nzn − z
∑

n>0

2nzn = 1 +
∑

n>1

2n−1zn.

So far not very surprising. . .

Imagine now that instead of counting general compositions, we want to restrict to those
whose parts are only 1 and 2; let us call this class C1,2. It should be clear that C1,2 = S(•, ••).
The GF for the class {•, ••} is z + 2z, and hence the GF for compositions with parts 1 or
2 is

c1,2(z) =
1

1− z − z2
.

Recall that this is the GF for Fibonacci numbers (as an exercise, show that compositions
whose parts are 1 and 2 satisfy the recurrence for Fibonacci numbers). In general, if we
want compositions whose parts are {p1, p2, . . . , pr}, the generating function will be

1
1− zp1 − zp2 − · · · − zpr

.

Let us study in some detain the case of parts {1, 2, 3}. The generating function is

1
1− z − z2 − z3

.

Imagine that we do no need the exact form of the coefficients, but rather want to have an
idea about their order of magnitude. Since the generating function is rational, we can apply
Theorem 4.9. First we compute the roots of the denominator; in this case, r1 ∼ 0.5437,
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r2 ∼ −.7718 + i1.1151, and r3 ∼ −.7718 − i1.1151. Since each root has multiplicity one,
we know that

1
1− z − z2 − z3

= A
∑

n>0

(
1
r1

)n

zn + B
∑

n>0

(
1
r2

)n

zn + C
∑

n>0

(
1
r3

)n

zn

for some constants A,B, C. Since |1/r1| ∼ 1.8393 and |1/r2| = |1/r3| ∼ 0.7374, for large
n the term (1/r1)n will “win” over the others. Hence, we can say that the number of
compositions of n with parts 1, 2, 3 behaves asymptotically as A1.8393n, for some constant
A. The exact value of the constant could be found without much difficulty if we are
interested.

From this example we can extract the following principle. If a(z) is a rational generating
function and γ is the root of the denominator that has smallest absolute value, and γ is a
simple root, then for large n

[zn]a(z) ∼ c

(
1
γ

)n

for some constant c.

5.3 Rooted plane trees

A tree is a connected acyclic graph; if a tree has n vertices, it is well-known that it has
n− 1 edges. A rooted tree is a tree that has a distinguished vertex, the root. A rooted tree
is plane if we consider it embedded in the plane, that is, the relative order of the subtrees
that hang from each vertex is relevant. The following figure shows all rooted plane trees
up to 4 vertices (contrary to real trees, the root is the topmost vertex).

Figure 7: Rooted plane trees.

Our first goal will be to count rooted plane trees according to their number of vertices.
Observe that we can define them recursively as follows: a plane rooted tree consists of
a vertex from which hangs a (possibly empty) ordered set of plane rooted trees. In the
language of combinatorial classes,

T = ζ × S(T ).

Hence,

t(z) = z
1

1− t(z)
⇒ t(z)2 − t(z) + z = 0.
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Solving this equation we get the somewhat familiar generating function

t(z) =
1−√1− 4z

2
.

Indeed, this is the GF for Catalan numbers multiplied by z. Hence, tn, the number of
rooted plane trees with n vertices, is the (n− 1)-rst Catalan number, Cn−1 = 1

n

(
2n−2
n−1

)
.

Let us consider now binary rooted plane trees. That is, rooted plane trees where from
each vertex hang either two or zero subtrees. The vertices that have two subtrees are called
internal vertices, and the terminal vertices are called leaves. It is not difficult to show that
the number of leaves is the number of internal vertices plus one. One usually counts binary
rooted plane trees according to the number of internal vertices. So let U be the class of
binary rooted plane trees with the size function being the number of internal vertices. A
member of U is then either just a root (size zero) or a root from which hangs a pair of trees
from U . Hence,

U = ε + ζ × U × U .

Taking generating functions,
u(z) = 1 + zu(z)2,

which, again!, is the GF for Catalan numbers. So the number of binary trees with n internal
vertices is Cn. Find a bijection between binary rooted plane trees with n internal vertices
and rooted plane trees with n + 1 vertices.

In general, we can consider rooted plane trees where the outdegree of each vertex belongs
to a set of integers Ω ⊆ N (which has to include always 0). If we denote by UΩ the class of
such trees, with the size of a tree being again the number of internal vertices, a moment’s
thought gives the following equation

UΩ = ε + ζ ×

 ∑

w∈Ω\0
Uw

Ω


 ,

which translates to GF’s as

u(z) = 1 + z


 ∑

w∈Ω\0
u(z)w


 .

If instead of counting according to the number of internal vertices we want to count
trees with respect to the total number of vertices, and with the out-degrees still restricted
to Ω, we have the following equation

TΩ = ζ ×

ε +

∑

w∈Ω\0
T w

Ω


 ,

and this gives, in terms of generating functions,

t(z) = z


1 +

∑

w∈Ω\0
t(z)w


 .
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6 The symbolic method for labelled structures

The combinatorial classes we have dealt with so far were “unlabelled”, in the sense that
the pieces or atoms that make up an object were undistinguishable among them and bear
no particular label or tag. At this point we are interested in enumerating labelled objects,
such as:

- Set partitions, where each atom is an integer from 1 to n.

- Labelled graphs, where each vertex has a label, usually an integer. Hence, we regard
the two graphs in Figure 8 as different.

2

3

4

1
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Figure 8: Two different labelled graphs.

Definition 6.1. A combinatorial class is labelled if it is a class and each object is labelled
in the following sense: if an object has size n, then it bears n different labels belonging to
the set [n].

So, in a labelled class, the size of an object and the number of labels are always equal.
Let us look at some examples.

Example. Graphs are a very natural labelled class. In a graph with n vertices, we label
them with the integers from 1 to n. Observe that not all graphs with n vertices can be
labelled in the same number of ways. For instance, a complete graph can only be labelled
in one way, whereas a graph with n vertices and only one edge can be labelled in

(
n
2

)
ways.

Example. Set partitions of [n] are a labelled class.

Example. Permutations of [n] are also a labelled class. Its objects can be described as
sequences of labeled atoms.

As with unlabelled classes, we have an empty class {ε} whose only element has size 0
and hence bears no label. We also have the atomic class ζ that has a unique element of
size 1 and bearing the label 1.

To enumerate labelled classes we have to introduce a new kind of generating function,
the exponential generating function (EGF). As before, let an denote the number of objects
of size n in the labelled class A. The exponential generating function for A is

a(z) =
∑

n>0

an
zn

n!
=

∑

α∈A

z|α|

|α|! .
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The name “exponential” comes of course from the fact that exp(z) =
∑

n>0
zn

n! .

Example. Let P be the class of permutations. Its EGF is

p(z) =
∑

n>0

n!
zn

n!
=

∑

n>0

zn =
1

1− z
.

6.1 Constructions

As we did with unlabelled classes, we define constructions on classes that translate to
operations in the corresponding exponential generating functions.

Sum. It works exactly the same as with unlabelled classes. Given two disjoint labelled
combinatorial classes A and B, their sum is the class C = A+ B = {γ : γ ∈ A ∪ B}, where
the size and the labels of an object are inherited from either A or B. The corresponding
EGF is again the sum of the EGF’s of the summands.

Product. The product of two labelled classes has to be defined precisely, since we have
to take care of the labels. Let A and B be two labelled classes and let α ∈ A and β ∈ B.
The element (α, β) in the cartesian product A × B should have size |α| + |β|, as before,
and hence should be labelled with the integers from 1 to |α| + |β|. If we do not modify
the labels, this is not achieved, since they will be repeated labels and they will run only to
max{|α|, |β|}. Here is how we surpass this difficulty.

Given a labelled object γ, say that γ′ is a relabelling of γ if γ and γ′ agree as unlabelled
structures and the labels of γ′ have the same relative order as the ones of γ (but do not
necessarily consist of the integers from 1 to |γ|). Here’s an example. Consider graph G in
Figure 9. The graph G′ is a relabelling of G because the smallest label, 3, replaces 1 in G,
the second smallest, 12, replaces 2, and so on. But H is not a relabelling of G since the
two largest labels are not linked by an edge. We write ρ(γ′) = γ to denote the fact that γ′

is a relabelling of γ (one also says that γ′ reduces to γ).

2

3

4

1 3

13

100

2

6

12 10 8

G’ HG

Figure 9: G′ is a relabelling of G, whereas H is not

With the notion of relabelling we can now define the labelled product of two objects:

α ? β = {(α′, β′) : (α′, β′) is well labelled and ρ(α′) = α, ρ(β′) = β}

So, the labelled product of two objects is not a single object, but a collection of labelled
objects. Actually, it is easy to see that if |α| = i and β = j, then α ? β has

(
i+j
i

)
elements.

Let us see how the labelled product works with an example.
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Example. Consider the two labelled rooted plane trees in Figure 10; each is labelled with
the integers {1, 2}. Their product is the set of six pairs of trees labelled with the integers
{1, 2, 3, 4}.

, , , , , ,, , , , ,

1

4 3 4 1

3 2

1

1

2 3
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31
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α ∗ β =

1

2 1

2

α = β =

Figure 10: The labelled product of two rooted trees

Now that we have defined the labelled product of two elements, we can define the
labelled product of two labelled classes:

A ? B =
⋃

α∈A,β∈B
α ? β.

The next goal is to find the EGF for the labelled product. Let cn denote the number of
elements of size n in A ? B. Each element counted in cn is a pair consisting of an element
from A of size i and an element of B of size n− i, and this pair relabelled in any consistent
way. But, as observed above, such a pair can be relabelled in

(
n
i

)
ways. Hence,

cn =
n∑

i=0

aibn−i

(
n

i

)
.

Therefore,

c(z) =
∑

n>0

cn
zn

n!
=

∑

n>0

(
n∑

i=0

aibn−i

(
n

i

))
zn

n!
=

∑

n>0

(
n∑

i=0

ai

i!
bn−i

(n− i)!

)
zn

=


∑

n>0

an
zn

n!





∑

n>0

bn
zn

n!


 = a(z)b(z).

Thus, the exponential generating function of the product of two labelled classes is the
product of the corresponding exponential generating functions.

Once we have the product, the sequence construction works the same as in the unlabelled
case.

S(A) = ε +A+A ?A+A ?A ?A+ · · ·

43



Where, as in the unlabelled case, we only consider this constructions for classes that do not
have elements of size 0. Taking EGF’s, we get that the EGF for the sequence construction
is

s(z) = 1 + a(z) + a(z)2 + a(z)3 + · · · = 1
1− a(z)

.

Example. Consider again the class T of labelled rooted plane trees, where the size of a
tree is the number of vertices. As before, a tree consists of a root, of size 1, together with
a sequence of labelled rooted plane trees. Hence,

T = ζ ? S(T ) ⇒ t(z) = z
1

1− t(z)
.

Therefore the EGF for labelled rooted plane trees is the same as the OGF of rooted plane
trees; but this does not mean that there are as many labelled trees as unlabelled ones. The
number of labelled rooted plane trees is

n![zn]t(z) = n!
1
n

(
2n− 2
n− 1

)
=

(2n− 2)!
(n− 1)!

.

Suppose now that we want to count labelled rooted trees, without the planarity require-
ment. Hence, the order of the subtrees that hang from each vertex does not matter. We
can no longer say that such a tree is a root together with a sequence of trees; rather, we
would like to say that we have a root together with a “set” of trees. Let us formalize the
concept of a set of a labelled class.

Let Pk(A) denote the class obtained by taking sets of k elements of A. By this we mean
that we take the product of k copies of A and we regard two elements (α1, . . . , αk) and
(α′1, . . . , α

′
k) as the same if for some permutation π of [k], we have that (απ(1), . . . , απ(k)) =

(α′1, . . . , α
′
k). That is, we consider the product of k copies of A regardless of the order of

the components. Since each element in Ak can be ordered in k! ways, we have that the
EGF for Pk(A) is

pk(z) =
a(z)k

k!
.

Now let P(A) denote the class of all subsets of A, including the empty set. Hence,

P(A) = ε +A+ P2(A) + P3(A) + · · ·

And for the EGF,

p(z) = 1 + a(z) +
a(z)2

2!
+

a(z)3

3!
+ · · · = exp(a(z)).

So, the set construction translates to taking the exponential of the EGF.
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6.2 Labelled graphs

Now we can easily solve the problem of labelled rooted trees (non-plane). A labelled rooted
tree consists of a root ζ from which hangs a set of rooted trees. Hence,

T = ζ ? P(T )

and taking EGF’s
t(z) = z exp(t(z)).

The problem that arises now is to solve this equation. It is not the first implicit equation
that we encounter in this course, but the previous ones, like for Catalan numbers, were easy
enough to solve by hand. An extremely useful tool in this sort of situations is Lagrange’s
inversion formula.

Theorem 6.2. Let Y = zΦ(Y ) be an implicit equation for the formal power series Y , in
the variable z. Assume that Φ is also a formal power series and that Φ(0) = 1. Then

[zn]Y (z) =
1
n

[un−1]Φ(u)n.

Proof. One proof follows from the analogous result in analysis. There are proofs purely
in terms of formal power series; they use a bit of the spirit of complex analysis. See for
instance the appendix in Van Lint and Wilson15.

Let us see how Lagrange’s inversion formula works for our equation t(z) = z exp(t(z)).
In this case, Φ is exp. Hence,

[zn]t(z) =
1
n

[un−1](exp(u))n =
1
n

[un−1](exp(nu)),

by the properties of the exponential. But the coefficient of un−1 in exp(nu) is nn−1

(n−1)! . Hence,

[zn]t(z) = nn−1

n! . Recall that t(z) is an exponential generating function, hence the number
of rooted trees is not the coefficient of zn, but n! times this coefficient. Hence the total
number of labelled rooted trees is nn−1.

Imagine now that we just want labelled trees, regardless of the root. For each labelled
unrooted tree with n vertices, we have n choices for the root. Hence, the number of labelled
trees is nn−1/n = nn−2. This is in fact a famous theorem of Cayley, that perhaps you know
from a graph theory course. This is not the most common proof of Cayley’s theorem; there
exist more combinatorial proofs, one of the most popular using Prüfer sequences16.

Now we can even move from trees to general labelled graphs. Let G denote the class
of labelled graphs, with the size being the number of vertices. If a graph has n labelled
vertices, it can have as edges any subset of the

(
n
2

)
possible edges. Hence, there are 2(

n
2)

15A course in combinatorics, Cambridge UP.
16Most graph theory textbooks contain this proof. The book Proofs from the book by Aigner and Ziegler

(Springer) contains half a dozen nice proofs of Cayley’s theorem.
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labelled graphs on n vertices. Since each unlabelled graph can be labelled in at most n!
ways, there are at most 1

n!2
(n
2) unlabelled graphs on n vertices17. The EGF for G is

g(z) =
∑

n>0

2(n
2)

n!
zn.

Suppose that now we want to restrict to connected graphs. Since a graph is a set of
connected components, we have that

G = P(K),

where K is the class of connected labelled graphs. Hence, for the EGF’s,

g(z) = exp(k(z)) ⇒ k(z) = l(g(z)− 1),

where l(z) is the series
∑

n>1(−1)n−1zn/n, that is, log(1− z).

6.3 Set partitions revisited

Recall that a partition of the set [n] is a decomposition of [n] as the union of non-empty
disjoint sets, each of them called a block. Let A(r) the class of set partitions into r blocks,
with the size being the number of elements in the set; it is a labelled class. A set partition
into r blocks consists of a set of r non-empty sets of atoms. So let us study first the class
V of non-empty sets. It should be clear that

V = P1(ζ) + P2(ζ) + P3(ζ) + · · ·
Then,

A(r) = Pr(V).

Taking EGF’s,

v(z) = exp(z)− 1, a(r)(z) =
v(z)r

r!
=

(exp(z)− 1)r

r!
.

So a(z)(r) is the exponential generating function for Stirling numbers of the second kind{
n
r

}
, for fixed r. By extracting the coefficient of zn above we recover the formula for Stirling

numbers of the second kind.

Recall that Bell numbers count the total number of partitions of the set [n]. Let B be
the class of partitions of [n], regardless of the number of blocks. Hence, a member of B is
a set of non-empty sets of atoms.

B = P(V) ⇒ b(z) = exp(exp(z)− 1),

which is the EGF for Bell numbers. By extracting the coefficient of zn we get a formula
for Bn as an infinite sum.

Bn = n![zn] exp(exp(z)− 1) =
n!
e

[zn] exp(exp(z)) =
n!
e

[zn]
∑

k>0

exp(kz)
k!

=
1
e

∑

k>0

kn

n!
.

17Actually, this is the right number asymptotically, this was first proved by Pólya. Roughly speaking, it
means that almost all graphs on n vertices can be labelled in n! ways.
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Alternatively, recall that Bell numbers can be expressed as a double finite sum using the
formula for Stirling numbers of the second kind.

Recall the expansions of the hyperbolic sine and cosine:

sinh(z) =
∑

i>0
z2i+1

(2i+1)!

cosh(z) =
∑

i>0
z2i

(2i)!

Use these expansions and the symbolic method to prove the entries in the following
table.

Set partitions Any number of blocks Odd number of blocks Even number of blocks

Any block sizes exp(exp(z)− 1) sinh(exp(z)− 1) cosh(exp(z)− 1)

Odd block sizes exp(sinh(z)) sinh(sinh(z)) cosh(sinh(z))

Even block sizes exp(cosh(z)− 1) sinh(cosh(z)− 1) cosh(cosh(z)− 1)

6.4 Permutation decompositions revisited

Let Q denote the class of permutations. We know well that its EGF is given by 1/(1−z). If
we wish, we can prove this in terms of the symbolic method by saying that a permutation is a
sequence of labeled atoms, so Q = S(ζ), from which the EGF follows inmediately. Another
way of looking at permutations is using cycle decompositions. Now, a permutation is a set
of cycles, where by a cycle we mean a cyclic permutation. Hence, Q = P(Z), where Z
denotes the class of cycles. The EGF for cycles is quite easy, given that there are (n− 1)!
cycles of length n. It is

∑
n>1 zn/n, which we denote by log(1/(1− z)). Hence,

q(z) = exp
(

log
(

1
1− z

))
=

1
1− z

,

which of course is no surprise. As with set partitions, we can first find the EGF for Stirling
numbers of the first kind.

Q(k) = Pk(Z) ⇒ q(k)(z) =
∑

n>0

[
n

k

]
zn

n!
=

1
k!

(
log

(
1

1− z

))k

An involution is a permutation π such that π2 is the identity. Clearly the only cycle
lengths allowed in the disjoint cycle decomposition of π are 1 and 2. Hence, I = P((1) +
(12)), which implies that the corresponding EGF is exp(z + z2/2); a formula can be easily
derived from this expression.
We can also use the symbolic specification to find a new proof of an old result. Let D be
the class of derangements, that is, the class of permutations with no fixed points. Clearly,
π is a derangement if and only if it contains to cycles of length 1 in its disjoint cycle
decomposition. Therefore, D = P(Z − ζ); hence, the EGF for derangements is

d(z) = exp
(

log
(

1
1− z

)
− z

)
=

exp(−z)
1− z

.

It is easy to deduce from here the formula for the number of derangements of n that we
found in the second chapter. 47


