Singular Separatrix Splitting
and the Melnikov Method: An Experimental Study
Amadeu Delshams and Rafael Ramírez-Ros

We consider families of analytic area-preserving maps depending on two parameters: the perturbation strength \(\varepsilon \) and the characteristic exponent \(h \) of the origin. For \(\varepsilon = 0 \), these maps are integrable with a separatrix to the origin, whereas they asymptote to flows with homoclinic connections as \(h \to 0^+ \). For fixed \(\varepsilon \neq 0 \) and small \(h \), we show that these connections break up. The area of the lobes of the resultant turnstile is given asymptotically by

\[
\varepsilon \exp\left(-\pi^2/h \Theta(h)\right)/h^{\Theta(h)}(h),
\]

where \(\Theta(h) \) is an even Gevrey-1 function such that \(\Theta(0) = 0 \) and the radius of convergence of its Borel transform is \(2 \pi^2 \). As \(\varepsilon \to 0 \), the function \(\Theta \) tends to an entire function \(\Theta^0 \). This function \(\Theta^0 \) agrees with the one provided by Melnikov theory, which cannot be applied directly, due to the exponentially small size of the lobe area with respect to \(h \).

These results are supported by detailed numerical computations; we use multiple-precision arithmetic and expand the local invariant curves up to very high order.

1. INTRODUCTION

The Problem

We will consider the family of planar standard-like maps

\[
F(x, y) = (y, -x + U'(y)),
\]

\[
U(y) = \mu_0 \log(1 + y^2) + \varepsilon V(y),
\]

where \(V(y) = \sum_{n \geq 1} V_n y^{2n} \) is an even entire function. Provided that \(\mu_0 + V_1 \varepsilon > 1 \), the origin \(O = (0, 0) \) is a hyperbolic fixed point with

\[
\text{Spec}[dF(O)] = \{ \exp(\pm h) \},
\]

and its characteristic exponent \(h > 0 \) is given by

\[
\cosh h = \mu_0 + V_1 \varepsilon.
\]

Moreover, when \(\varepsilon \) vanishes, \(F \) becomes integrable with a separatrix to the origin. Thus, the map \(F \) can be considered as a perturbation of an integrable map, \(\varepsilon \) being the perturbation strength. These two parameters, \(h > 0 \) and \(\varepsilon \), will be considered the intrinsic parameters of the map \(F \) under study.
Our goal is to show that for \(\varepsilon \neq 0 \) and for a general perturbation, the separatrix splits and exactly two (transverse) primary homoclinic points, \(z^+ \) and \(z^- \), appear in the quadrant \(\{ x, y > 0 \} \). By primary homoclinic orbits we mean that these orbits persist for all \(\varepsilon \) small enough.

The pieces of the perturbed invariant curves between \(z^+ \) and \(z^- \) enclose a region called a lobe, shown shaded in the figure on the preceding page. Our measure of the splitting size will be the area \(A \) of this lobe. This lobe area is a homoclinic symplectic invariant, that is, it does not depend on the symplectic coordinates used, and all the lobes have the same area. Lobe areas also measure the flux along the homoclinic tangle, which is related to the study of transport [MacKay et al. 1984; 1987; Meiss 1992].

Both parameters, \(h > 0 \) and \(\varepsilon \), will be “small enough”, but the exact interpretation of this sentence is crucial for understanding the different kinds of results to be presented. Specifically, we are going to deal with the following situations:

1. **The regular case**: fixed \(h > 0 \), and \(\varepsilon \to 0 \).

2. **The singular case**: \(h \to 0^+ \). In its turn this case subdivides into two subcases:
 a. **The nonperturbative case**: \(\varepsilon \) fixed and \(h \to 0^+ \).
 b. **The perturbative case**: \(\varepsilon = o(h^p) \) and \(h \to 0^+ \), for some \(p \geq 0 \).

Both analytical and numerical results for the splitting of separatrices are obtained. The analytical results are expressed in terms of the Melnikov potential of the problem, which gives explicit formulae for our map. This is the reason for our choice of the map above as a model for this paper, instead of more celebrated maps like the Hénon map or the standard map.

The name “singular” for the case \(h \to 0^+ \) is due to the fact that the lobe areas are exponentially small in \(h \). The measure of such small quantities requires a very careful treatment, both from a numerical and an analytical point of view.

Outline of Results

In the regular case, for

\[
0 < |\varepsilon| < \varepsilon^*(h) = o(\exp(-\pi^2/h)),
\]

the discrete version of the usual Melnikov method [Delshams and Ramírez-Ros 1996; 1997] ensures the existence of two transverse, primary homoclinic orbits, and provides a first order approximation of the lobe area in terms of the perturbation strength \(\varepsilon \):

\[
A = \varepsilon A_{\text{Mell}} + O(\varepsilon^2),
\]

\[
A_{\text{Mell}} = e^{-\pi^2/8} \left(\Theta(0) + O(e^{-2\pi^2/h}) \right),
\]

where \(\Theta(0) = \sum_{n \geq 0} \Theta_n h^{2n} \) is an even entire function. If \(V(y) \) is a polynomial, \(\Theta(0) \) can be explicitly computed in a finite number of steps. For instance, \(\Theta(0) = 8\pi^2\gamma^2 h^{-2} \) for \(V(y) = y \), and \(\Theta(0) = \frac{8}{3}\pi^2\gamma^4 h^{-2}(1 + \gamma^2 h^{-2}) \) for \(V(y) = y^3 \). The nonpolynomial case is harder, although some closed formulae can be obtained. In particular, \(\Theta(0) = 8\pi V(2\pi) \), where \(V(\xi) = \sum_{n \geq 1} V_n \xi^{2n-1}/(2n - 1)! \) is the Borel transform of \(V(y) \).

In the singular case, the result above cannot be applied, since it requires \(\varepsilon \) to be exponentially small in \(h \). There are, however, a couple of analytical results that hold.

In the nonperturbative case, under the assumption

\[
(V_1 + 2V_2)\varepsilon < 1,
\]

there exist homoclinic orbits for \(h > 0 \) small enough, and an upper bound exponentially small in \(h > 0 \) is provided for the lobe area.

In the perturbative case \(\varepsilon = o(h^p) \), with \(p > 6 \), under the assumption \(\nabla V(2\pi) \neq 0 \), the existence of two transverse, primary homoclinic orbits in the first quadrant is proved, and an asymptotic expression for the area lobe is given:

\[
A = e^{\varepsilon - \pi^2/h} \left(8\pi V(2\pi) + O(h^2) \right) \quad (h \to 0^+) .
\]

Most of these analytical results are found in [Delshams and Ramírez-Ros 1996; 1997; 1998]. For the convenience of the reader, we have collected here the main ideas.

The heart of this paper is devoted to a numerical study of the situations not covered by the analytical results for the singular case. The numerical experiments have been performed for the simplest even perturbed potentials, that is, for the linear perturbation \(\varepsilon V'(y) = \varepsilon y \) and the cubic one \(\varepsilon V'(y) = \varepsilon y^3 \).

In the nonperturbative case, the following asymptotic expansion for the lobe area \(A \) is numerically established

\[
A \sim e^{\varepsilon - \pi^2/h} \sum_{n \geq 0} \Theta_n h^{2n} \quad (h \to 0^+ , \varepsilon \text{ fixed}) .
\]

The sign \(\sim \) means that the series \(\sum_{n \geq 0} \Theta_n h^{2n} \) is an asymptote, that is, if one retains a finite number of
leading terms, the error has the order of the first discarded term:
\[
A - \varepsilon e^{-\pi^2/h} \sum_{n=0}^{N} \Theta_n^\varepsilon h^{2n} = O(\varepsilon e^{2N+2}e^{-\pi^2/h}).
\]

The coefficients \(\Theta_n^\varepsilon\) are real numbers such that
\[
\Theta_n^\varepsilon = (2n)!/(2\pi^2)^{2n}(2n)! (\Xi_n^\varepsilon + O(n^{-1}))
\]
as \(n \to +\infty\), for some nonzero constant \(\Xi_n^\varepsilon\). In particular, \(\sum_n \Theta_n^\varepsilon h^{2n}\) is divergent for all \(h \neq 0\), but its Borel transform \(\bar{\Theta}(h) = \sum_n \Theta_n^\varepsilon \xi^{2n-1}/(2n-1)!\) is convergent for \(|\xi| < 2\pi^2\). This implies that the function \(\Theta(h) \sim \varepsilon^{-1} \exp(\pi^2/h) A\) is Gevrey-1 of type \(\rho = 1/2\pi^2\). Recall that a function \(f(x) \sim \sum_{n=0}^{\infty} f_n x^n\) is said to be Gevrey-\(\rho\) of type \(\rho\) if there are positive constants \(C, \alpha > 0\) such that \(|f_n| \leq C\rho^n \Gamma(\alpha n + 1)\), where \(\Gamma(z)\) stands for the Gamma function. (We follow the notations of [Ramis and Schäffke 1996].)

In the perturbative case, we study the behavior of the objects \(\Theta(h), \Theta_n^\varepsilon, \Xi_n^\varepsilon\) checking that all of them tend to well-defined limits as \(\varepsilon \to 0\). (That is, for \(\varepsilon = o(1)\). In the notation \(\varepsilon = o(h^n)\), this means that \(p = 0\).)

First, the function \(\Theta(h)\) tends to the Melnikov prediction \(\Theta(h)\) when the perturbation strength \(\varepsilon\) tends to zero; more precisely,
\[
\Theta(h) = \Theta(h) + O(\varepsilon), \quad \text{uniformly in } h \in (0, 1].
\]

The coefficients \(\Theta_n^\varepsilon\) of the Gevrey series for \(\Theta(h)\) also converge to the Taylor coefficients \(\Theta_n^0\) of the entire function \(\Theta(h)\). (For example, \(\Theta_n^\varepsilon = 8\pi V(2\pi) + O(\varepsilon)\).) Obviously, this convergence cannot be uniform in the index \(n\), since
\[
\lim_{n \to \infty} |\Theta_n^\varepsilon| = \begin{cases} 0 & \text{if } \varepsilon = 0, \\ \infty & \text{otherwise}. \end{cases}
\]

Finally, \(\lim_{\varepsilon \to 0} \Xi_n^\varepsilon = 0\), since \(\Xi_n^\varepsilon\) quantifies the growth of the coefficients \(\Theta_n^\varepsilon\), and \(\lim_{\varepsilon \to 0} \Theta_n^\varepsilon\) gives a decreasing sequence. In fact, one has
\[
\Xi_n^\varepsilon = \varepsilon \Xi_n^\varepsilon + O(\varepsilon^2),
\]
where
\[
\Xi_n^\varepsilon = \begin{cases} -12\pi^{-1} & \text{if } V'(y) = y, \\ -16/3 & \text{if } V'(y) = y^3. \end{cases}
\]

Relation to Other Work

By now, there is a well-developed literature on singular perturbations for maps. Results showing that the splitting size is exponentially small in the characteristic exponent \(h\) have been obtained by many authors. For the sake of brevity, we review results about analytic area-preserving maps, both from a theoretical and a numerical point of view. For a review of the results concerning flows, we refer to [Delshams and Seara 1997; Delshams et al. 1999], and the references therein.

The first relevant results are exponentially small upper bounds of the splitting size for analytic area-preserving maps having a weakly hyperbolic fixed point and homoclinic points to it [Neishtadt 1984; Fontich and Simó 1990; Fontich 1995; Fiedler and Schurle 1996; Gelfreich 1996]. Roughly speaking, in these papers it is proved that the maps asymptote to a Hamiltonian flow with a separatrix when the characteristic exponent \(h\) tends to zero. Then the splitting size is \(O(\exp(-\beta/h))\) for any positive constant \(\beta\) smaller than \(2\pi d\), where \(d\) is the analyticity width of the separatrix of the limit flow. No other general results are known. In order to compare this result with the next ones, it is convenient to formulate it as
\[
\text{splitting size } = e^{-\beta/h} \Theta(h), \quad \Theta(h) \text{ bounded when } h \to 0^+.
\]

The next step was the attainment of exponentially small asymptotic formulae in some standard-like maps, by V. Lazutkin and coworkers [Lazutkin 1984; Lazutkin et al. 1989; Gelfreich et al. 1991]; see also [Hakim and Mallick 1993; Suris 1994; Treschev 1996]. For instance, regarding the standard map and the Hénon map, in these works it is claimed that the splitting has an asymptotic behavior of the form \(\omega_0 h^\gamma \exp(-\beta/h)\), for some constants \(\omega_0 \neq 0, \beta > 0, \gamma\); that is,
\[
\text{splitting size } = h^\gamma \omega_0 \exp(-\beta/h) \Theta(h), \quad \Theta(h) \text{ continuous at } h = 0 \text{ and } \Theta(0) \neq 0.
\]

The constant \(\omega_0 = \Theta(0)\) is defined by means of a nonlinear parameterless problem which only can be solved numerically, \(\gamma\) is obtained by linearization about the separatrix in the complex plane, and \(\beta = 2\pi d\), where \(d\) is again the analyticity width of the unperturbed separatrix. A complete proof of these asymptotic formulae has not been published yet, but there is little doubt about its validity. It should be noted that there exist examples where a formula like (1–2) cannot hold, because the splitting behaves asymptotically like \(\omega_0 h^\gamma \exp(-\beta/h) \cos(\alpha/h)\) with \(\alpha \neq 0\); see [Gelfreich et al. 1991; Scheurle et al.].
The maps considered here do not fall into this class.

The strongest analytical results on the regularity of the function $\Theta(h)$ were published in [Gelfreich et al. 1994; Chernov 1995; Nikitin 1995], where it is stated (again without proofs) that

$$\text{splitting size} = h^n e^{-\beta/h} \Theta(h),$$

$$\Theta(h) \text{ smooth at } h = 0 \text{ and } \Theta(0) \neq 0,$$ \hspace{1cm} (1-3)

for the standard map [Gelfreich et al. 1994], the Hénon map [Chernov 1995], and the twist map [Nikitin 1995]. All these works contain formulae like

$$\omega[0] \sim h^n e^{-\beta/h} \sum_{n=0}^{\infty} \omega_n h^{2n},$$

where $\omega[0]$ stands for the Lazutkin’s homoclinic invariant introduced in [Gelfreich et al. 1991] for some distinguished symmetric homoclinic orbit 0. Only a few coefficients ω_n were explicitly computed in these works: the first five coefficients in [Gelfreich et al. 1994], the first three in [Nikitin 1995] and just two in [Chernov 1995]. Then a natural question arises: What is the growth rate of the coefficients ω_n when $n \to +\infty$? Equivalently, is $\Theta(h)$ somewhat stronger than smooth?

A numerical answer involves the computation of many such coefficients. Recent numerical experiments by C. Simó suggest that the asymptotic series $\sum_{n=0}^{\infty} \omega_n h^{2n}$ are divergent, though their Borel transforms are convergent, that is,

$$\text{splitting size} = h^n e^{-\beta/h} \Theta(h),$$

$$\Theta(h) \text{ Gevrey-1 at } h = 0 \text{ and } \Theta(0) \neq 0.$$ \hspace{1cm} (1-4)

Our numerical results fall just into this class, with the area A as our measure of the splitting size, and the coefficients Θ_n^e playing the rôle of ω_n. The computation of ω_n for relatively large values of n (say up to $n = 100$), requires the use of expensive multiple-precision arithmetic, so that these experiments are on the edge of the current computer possibilities. Therefore, further numerical results improving these ones are unlikely to appear in the near future.

As for rigorous results, to the best of our knowledge, the paper [Delshams and Ramírez-Ros 1998] is the only place where a behavior like (1-2) has been rigorously proved for some area-preserving maps. This makes it evident that experimental studies are much more advanced than analytical ones. However, numerical results of the form (1-4) open the door to new techniques, like resurgence tools, that have been already applied to the rapidly forced pendulum [Sauzin 1995], and may be successful in filling this gap between analytical and numerical results.

Outline of the Computations

The area of the lobes of the turnstile created when the separatrices split is computed using the MacKay–Meiss–Percival action principle [MacKay et al. 1984; Easton 1991], in which the lobe area is interpreted as a difference of actions. The numerical computation of such exponentially small lobe areas with arbitrary precision forces us to

- use expensive multiple-precision arithmetic,
- expand the invariant curves up to an optimal order, which is very large, and
- take the greatest advantage of symmetries and/or reversors.

Clearly, the first item is unavoidable, due to the strong cancellation produced when subtracting the (exponentially close) actions, and also due to the requirement of arbitrary precision in the final result. The second item is intended to take the initial iterates far enough from the weakly hyperbolic point so that the homoclinic points z^\pm can be attained in (relatively) few iterations: we are able to find the (optimal) order which minimizes the computer time. This optimal choice of order avoids an undesirable accumulation of rounding errors due to the large number of operations. Finally, the third item is crucial to overcome certain stability problems. Those algorithms for computing homoclinic points that do not take into account symmetries and/or reversors (if they exist, of course) have condition numbers inversely proportional to the splitting size, see for instance [Beyn and Kleinhau 1997, p. 1218]. Therefore, they would be exponentially ill-conditioned for our singular maps.

We have improved the methods used in [Lomelí and Meiss 1996] to compute lobe areas. In that paper a similar problem was studied, but the invariant curves were developed only to first (linear) order and standard double-precision arithmetic was used. Due to this, the computations there only gave accurate results for lobe areas $A \gg 10^{-14}$, that is, for characteristic exponents h not smaller than $\frac{1}{3}$. In the present work we have been able to compute lobe areas less than 10^{-2000} (that is, we have reached $h = 0.001$), with a relative error less than 10^{-300}. The computation for such extreme cases takes two
three days, depending on the potential $V(y)$, on a Pentium 200 machine running Linux. More than 5200 decimal digits in the arithmetic and 1300 coefficients in the Taylor expansion of the invariant curves were needed for these accurate computations.

So far, and to the best of our knowledge, the most refined (published) experiments about singular splittings for maps were those of [Fontich and Simó 1990], where splittings of order 10^{-200} were numerically computed following the above-mentioned items. Other experiments with multiple-precision arithmetic are contained in [Fiedler and Scherle 1996], but only order-one (that is, linear) expansions of the invariant curves were used in that paper. In [Benseny and Olivé 1993] quadruple precision and high-order expansions were used to study the rapidly forced pendulum.

Outline of the Paper

The rest of the paper is devoted to explaining how our results have been obtained. In the next section, the model is introduced. In Section 3, the regular case $\varepsilon \to 0$ and h fixed is discussed. We review how to compute the $O(\varepsilon)$-approximation of the lobe area using the discrete version of the Melnikov method. In particular, the entire function $\Theta^\varepsilon(h)$ is introduced. Section 4 is devoted to the singular limit $h \to 0^+$. The asymptotic behavior of $\Theta^\varepsilon(h)$ is studied and the connection with Melnikov theory is drawn. The results in this section are the heart of the paper. In Section 5, the algorithm used to compute lobe areas with arbitrary accuracy is described. This is the key tool in this work. The numerical calculations are complicated by problems of stability, precision and computer time, so we provide sufficient detail to show how these problems can be overcome. Finally, further numerical experiments related to singular separatrix splittings for maps are proposed in Section 6. They will be the subject of future research.

2. THE MODEL

The family of standard-like maps under study is

$$F(x, y) = (y, -x + U(y)), \quad \mu := \mu_0 + \varepsilon V_1 > 1,$$

where $U(y) = \mu_0 \log(1 + y^2) + \varepsilon V(y)$,

$$V(y) = \sum_{n \geq 1} V_n y^{2n}$$

is an even entire function. For the origin $O = (0, 0)$ is a hyperbolic fixed point with $\text{Spec}[dF(O)] = \{e^{\pm h}\}$, where the characteristic exponent $h > 0$ is determined by $\cosh h = \mu$.

We will consider the characteristic exponent h and the perturbation strength ε as the intrinsic parameters of our model. Accordingly, for every $h > 0$ and every real ε, we rewrite the map (2–1) in the form

$$F(x, y) = (y, -x + U(y)),$$

$$U(y) = U_0(y) + \varepsilon U_1(y),$$

$$U_0(y) = \mu \log(1 + y^2),$$

$$U_1(y) = V(y) - V_1 \log(1 + y^2).$$

From now on, the subscript 0 will denote an unperturbed quantity, that is, $\varepsilon = 0$, and the following notations will be used without further comment:

$$\mu = \cosh h, \quad \gamma = \sinh h, \quad \lambda = e^h.$$

The Unperturbed Model

Setting $\varepsilon = 0$ in (2–2), we obtain the McMillan map [McMillan 1971]

$$F_0(x, y) = (y, -x + U_0(y)) = \left(y, -x + \frac{2\mu y}{1 + y^2} \right),$$

which is an integrable exact map, with a polynomial first integral given by

$$I_0(x, y) = x^2 - 2\mu xy + y^2 + x^2 y^2.$$

The phase space associated to F_0 is rather simple, since it is foliated by the level curves of the first integral I_0, which are symmetric with respect to the origin. As $\mu > 1$, the zero level of I_0 is a lemniscate, whose loops are separatrices to the origin (see Figure 1). From now on, we will concentrate on the separatrix A in the quadrant $\{x, y > 0\}$, which can be parameterized by

$$z_0(t) = (x_0(t), y_0(t)) = \left(\xi_0(t - h/2), \xi_0(t + h/2) \right),$$

$$\xi_0(t) = \gamma \sech t.$$

This parameterization is called natural since

$$F_0(z_0(t)) = z_0(t + h),$$

a fact that can be checked simply by noting that $\xi_0(t)$ is a homoclinic solution of the difference equation

$$\xi_0(t + h) + \xi_0(t - h) = U_0'(\xi_0(t)).$$

A natural parameterization is unique except for a translation in the independent variable. To determine it, it is worth looking at the reversors of the map.
Indeed, the involution \(R^+ (x, y) := (y, x) \) is a reversor of the McMillan map \(F_0 \), that is, \(F_0^{-1} = R^+ \circ F_0 \circ R^+ \). The separatrix \(\Lambda \) is \(R^+ \)-symmetric, that is, \(R^+ \Lambda = \Lambda \), and it intersects transversely the fixed set \(C^+ := \{ z : R^+ z = z \} \) of \(R^+ \) in one point \(z_0^+ \). The parameterization (2-4) of \(\Lambda \) has been chosen to satisfy \(z_0(0) = z_0^+ \).

The involution \(R_0^- := F_0 \circ R^+ \) is another reversor of \(F_0 \). The separatrix \(\Lambda \) is also \(R_0^- \)-symmetric and intersects transversely the fixed set \(C_0^- \) of \(R_0^- \) in one point \(z_0^- \), and it turns out that \(z_0(h/2) = z_0^- \). The associated orbits
\[
\begin{align*}
\mathcal{O}_0^+ &:= \{ z_0(nh) : n \in \mathbb{Z} \}, \\
\mathcal{O}_0^- &:= \{ z_0(h/2 + nh) : n \in \mathbb{Z} \},
\end{align*}
\]
are called symmetric homoclinic orbits, since
\[
R^+ \mathcal{O}_0^+ = \mathcal{O}_0^-, \quad R_0^- \mathcal{O}_0^- = \mathcal{O}_0^+.
\]

3. The Perturbed Model

For \(\varepsilon \neq 0 \), the phase portrait of the exact map (2-2) looks more intricate. The origin is a hyperbolic fixed point with the same characteristic exponent \(h \), since the perturbation \(\varepsilon U_1(y) = O(y^3) \) does not contain linear terms at the origin. We denote by \(W^{us} \) its unstable and stable invariant curves with respect to \(F \). Since the map (2-2) is odd, the invariant curves are symmetric with respect to the origin, so that we concentrate only on the positive quadrant \(\{ x, y > 0 \} \).

By the form of the perturbation, \(R^+ \) is also a reversor of \(F \), as is the involution \(R^- := F \circ R^+ \), given by \(R^-(x, y) = (x, -y + U'(x)) \). Their fixed sets \(C^\pm = \{ z : R^\pm z = z \} \) are important because \(R^\pm(W^s) = W^s \). Consequently, any point in the intersection \(C^\pm \cap W^s \) is a homoclinic point, and gives rise to a symmetric homoclinic orbit. See Figure 2.

Since the separatrix \(\Lambda \) intersects transversely the unperturbed curve \(C_0^\pm \) at the point \(z_0^\pm \), there exists a point \(z^\pm = z_0^\pm + O(\varepsilon) \in C^\pm \cap W^s \) and, therefore, there exist at least two symmetric homoclinic orbits in the quadrant \(\{ x, y > 0 \} \), for \(|\varepsilon| \) small enough. They are called primary since they exist for arbitrary small \(|\varepsilon| \).

3A. Melnikov Theory for Exact Planar Maps

We now recall some perturbative results to detect the existence of transverse homoclinic orbits for exact maps. For simplicity, we shall assume that all the objects are smooth and restrict the discussion to
maps on the plane with the usual symplectic structure: the area.

Given the symplectic form
\[\omega = dx \wedge dy = d(-y \, dx) \]
on the plane \(\mathbb{R}^2 \), a map \(F : \mathbb{R}^2 \rightarrow \mathbb{R}^2 \) is called exact if there exists some function \(S : \mathbb{R}^2 \rightarrow \mathbb{R} \) such that \(F^*(y \, dx) - y \, dx = dS \). The function \(S \) is called the generating function of \(F \) and, except for an additive constant, it is uniquely determined.

Let \(F_0 : \mathbb{R}^2 \rightarrow \mathbb{R}^2 \) be an integrable exact diffeomorphism with a separatrix \(\Lambda \) to a hyperbolic fixed point \(z^\infty_0 \). Next, consider a family of exact diffeomorphisms \(F_t = F_0 + \varepsilon F_1 + O(\varepsilon^2) \), as a general perturbation of the situation above, and let \(S_{t} = S_{0} + \varepsilon S_{1} + O(\varepsilon^{2}) \) be the generating function of \(F_t \).

We introduce the Melnikov potential of the problem as the smooth real-valued function \(L : \Lambda \rightarrow \mathbb{R} \) given by
\[L(z) = \sum_{n \in \mathbb{Z}} \hat{S}_1(z_n), \quad z_n = F_0^n(z), \quad z \in \Lambda, \quad (3-1) \]
where \(\hat{S}_1 : \mathbb{R}^2 \rightarrow \mathbb{R} \) is defined by
\[\hat{S}_1 = S_1 - y \, dx(F_0)[F_1]. \]

(In components, writing \(F_0 = (X_0, Y_0) \) and \(F_1 = (X_1, Y_1) \), the value of \(\hat{S}_1 \) is simply \(S_1 - Y_0X_1 \).) In order to get an absolutely convergent series (3-1), \(\hat{S}_1 \) is determined by imposing \(\hat{S}_1(z^{\infty}_0) = 0 \).

The differential of \(L \) is a geometrical object which gives the \(O(\varepsilon) \)-distance between the perturbed invariant curves \(\mathcal{W}^{n.s}_\varepsilon \). More precisely, let \((t, \varepsilon)\) be some cotangent coordinates adapted to \(\Lambda \) —that is, in these coordinates the separatrix \(\Lambda \) is given locally by \(\{ \varepsilon = 0 \} \) and the symplectic form \(\omega \) reads as \(dt \wedge d\varepsilon \) —and let \(\{ \varepsilon = E^{n.s}_\varepsilon(t) \} \) be a part of \(\mathcal{W}^{n.s}_\varepsilon \). (Recall that cotangent coordinates can be defined in neighborhoods of Lagrangian submanifolds [Weinstein 1973].) We showed in [Delshams and Ramírez-Ros 1997] that
\[E^{n.s}_\varepsilon(t) - E^{s}_\varepsilon(t) = \varepsilon L'(t) + O(\varepsilon^2), \]
and that the construction above does not depend on the cotangent coordinates used.

The following result [Delshams and Ramírez-Ros 1997, Theorem 2.1] is a straightforward corollary of this geometric construction.

Theorem 3.1. Under the notations and hypotheses above, the nondegenerate critical points of \(L \) are associated to perturbed transverse homoclinic orbits. Moreover, when all the critical points of \(L \) are nondegenerate, all the primary homoclinic orbits arising from \(\Lambda \) are found in this way. Finally, if \(z \) and \(z' \) are nondegenerate critical points of \(L \), consecutive in the internal order of the separatrix, their associated perturbed homoclinic orbits determine a lobe with area
\[A = \varepsilon (L(z) - L(z')) + O(\varepsilon^2). \]

3B. The Regular Analytical Result

We are now ready to apply the theory above to our model. It is worth noting that the knowledge of the natural parameterization (2-4) of the unperturbed separatrix \(\Lambda \) will be the crucial point to compute explicitly the Melnikov potential (3-1).

The map \(F = F_0 + \varepsilon F_1 + O(\varepsilon^2) \) given in (2-2) is exact with generating function \(\hat{S}(x, y) = -xy + U_0(y) + \varepsilon U_1(y) \). Writing its expression in components \(F_0 = (X_0, Y_0), F_1 = (X_1, Y_1) \), it turns out that \(X_1 = 0 \), and consequently \(\hat{S}_1(x, y) = S_1(x, y) = U_1(y) \).

The parameterization (2-4) allows us to write the Melnikov potential (3-1) of our problem as
\[L(t) := L(z_0(t)) = \sum_{n \in \mathbb{Z}} U_1(y_0(t + hn)) \]
\[= \sum_{n \in \mathbb{Z}} (f(t + hn) - g(t + hn)), \]
where
\[f(t) := V(\xi_0(t + h/2)), \]
\[g(t) := V_1 \log (1 + \xi_0(t + h/2)^2). \]

We are now confronted with the computation of a series for \(L(t) \), which is a doubly-periodic function: \(L(t) = L(t + h) = L(t + \pi) \). Consequently, the explicit computation of \(L(t) \) can be performed through the study of its singularities for complex values of the discrete time \(t \) [Delshams and Ramírez-Ros 1996].

For example, \(L_g(t) := \sum_n g(t + hn) \) is easily computed simply by noting that \(L_g(t) \) has no singularities and, therefore, it must be constant by Liouville’s theorem. The exact value of the constant is not important for our purposes, since the intrinsic geometrical object associated to the problem is \(L'(t) \) rather than \(L(t) \).
The computation of $L_f(t) := \sum_n f(t + hn)$ follows the same lines, but is more complicated. We sketch here the main ideas, and refer to [Delshams and Ramírez-Ros 1998] for the details.

First, we notice that the singularities of $f(t)$ are located only on the set $-h/2 + \pi i/2 + \pi i\mathbb{Z}$. Next, we denote by $\sum_{n \in \mathbb{Z}} v_n(h)\tau^{2n}$ the Laurent expansion around $\tau = 0$ of the function $\tau \mapsto f(-h/2 + \pi i/2 - ih\tau)$, and note that each $v_n(h)$ is an even entire function such that $v_n(0) = V_n$, for all $n \geq 1$. Finally, we introduce the even entire function

$$\Theta^0(h) := 8\pi \sum_{n \geq 1} \frac{(2\pi)^{2n-1}}{(2n-1)!} v_n(h) = 8\pi \hat{V}(2\pi) + O(h^2),$$

where $\hat{V}(\xi) := \sum_{n \geq 1} V_n e^{2\pi i n/(2(2n-1))}$ is the so-called Borel transform of $V(y)$.

Then the following asymptotic formula holds for the Melnikov potential $L = L_f - L_g = L_f$ (modulo an additive constant):

$$L(t) = e^{-\gamma/h} \cos(2\pi t/h) - (\Theta^0(h)/2 + O(e^{-2\gamma/h})).$$

If $V(y)$ is a polynomial, $\Theta^0(h)$ can be explicitly computed in a finite number of steps [Delshams and Ramírez-Ros 1998]. For instance, for the perturbations used in the numerical experiments,

$$\Theta^0(h) = \begin{cases} 8\pi^2 \pi^2 h^{-2} & \text{for } V'(y) = y, \\ \frac{8}{3} \pi^2 \pi^2 h^{-2}(1 + \pi^2 h^{-2}) & \text{for } V'(y) = y^3. \end{cases}$$

From formula (3–2), it is clear that if $\hat{V}(2\pi) \neq 0$ and h is small enough, the set of critical points of the Melnikov potential (3–3) is $h\mathbb{Z}/2$. All of them are nondegenerate, and parameterize the two unperturbed, symmetric, primary homoclinic orbits \mathcal{O}^\pm_0.

Now, the following result is a corollary of Theorem 3.1.

Theorem 3.2. Assume that $\hat{V}(2\pi) \neq 0$. Then, for any small enough (but fixed) characteristic exponent $h > 0$, there exists a positive constant $\varepsilon^* = \varepsilon^*(h)$ such that the map (2–2) has exactly two transverse, symmetric, primary homoclinic orbits \mathcal{O}^\pm in the quadrant $\{x, y > 0\}$, for $0 < |\varepsilon| < \varepsilon^*$. These orbits determine a lobe with area $A = \varepsilon A_{Mel} + O(\varepsilon^2)$, where the approximation A_{Mel} of first order in ε is given by

$$A_{Mel} = L(h/2) - L(0) = e^{-\gamma/h}(\Theta^0(h) + O(e^{-2\gamma/h})).$$

Remark 3.3. We note that εA_{Mel} is the dominant term for the Melnikov formula of the lobe area A only if $|\varepsilon| < \varepsilon^*(h) = o(\exp(-\pi^2/h))$. Otherwise, in the case $\varepsilon = O(h^p)$, Melnikov theory as described is not useful, since it only gives the very coarse estimate $A = O(h^{2p})$, and not the desired exponentially small asymptotic behavior.

4. THE SINGULAR CASE

Along this section, $h \to 0^+$, and we will study analytically and numerically two different situations for the parameter ε:

- The nonperturbative case: ε fixed and $h \to 0^+$.
- The perturbative case: $\varepsilon = o(h^p)$ and $h \to 0^+$, for some $p \geq 0$.

For the analytical results we only assume that the perturbed potential $V(y)$ is an even entire function. The numerical experiments have been performed for the simplest even perturbed potentials, that is, for the linear perturbation $\varepsilon V'(y) = \varepsilon y$ and the cubic one $\varepsilon V'(y) = \varepsilon y^3$.

4A. Singular Analytical Results

The nonperturbative case. The limit $h \to 0^+$ in (2–2) is highly singular, since all the interesting dynamics is contained in a $O(h)$ neighborhood of the origin, which becomes a parabolic point of the map for $h = 0$. To see clearly this behavior, we perform the following linear change of variables:

$$z = Cw, \quad C = h \begin{pmatrix} \lambda^{-1/2} & \lambda^{1/2} \\ \lambda^{1/2} & \lambda^{-1/2} \end{pmatrix}$$

with $z = (x, y)$ and $w = (u, v)$; that is, we diagonalize the linear part of (2–2) at the origin and we scale by a factor h. Then

$$(C^{-1} \circ F \circ C) w = w + hX^0(w) + O(h^2),$$

where

$$X^0(u, v) = (u - \eta(u + v)^3, -v + \eta(u + v)^3),$$

$$\eta = 1 - (V_1 + 2V_2)\varepsilon,$$

is a Hamiltonian vector field, with associated Hamiltonian

$$H^0(u, v) = w - \eta(u + v)^3/4.$$

Expression (4–1) shows clearly that F is $O(h)$-close to the identity, and that, after the change of variables $z = Cw$, the map (2–2) asymptotes to the Hamiltonian flow associated to the vector field (4–2) when $h \to 0^+$. In such a situation, it is known
Delshams and Ramírez-Ros: Singular Separatrix Splitting and the Melnikov Method: An Experimental Study

[Fonctich 1989] that the map (2–2) will have homoclinic points to the origin for any small enough h, if and only if the limit Hamiltonian flow has a homoclinic orbit to the origin.

From the expression (4–3), we see that the zero level $\{H^0(u, v) = 0\}$ contains homoclinic connections to the origin if and only if $\eta > 0$, that is, if

$$V_1 + 2V_2 \varepsilon < 1.$$ \hfill (4–4)

Assuming $\eta > 0$, the homoclinic orbit of the Hamiltonian (4–3) is given by

$$w^0(t) = \eta^{-1/2} \left(\frac{\cosh t - \sinh t}{2 \cosh^2 t}, \frac{\cosh t + \sinh t}{2 \cosh^2 t} \right),$$

which is analytic on the strip $\{t \in \mathbb{C} : |\text{Im} t| < d := \pi/2\}$. In this situation, it is also well-known [Fonctich and Simó 1990] that the splitting size is $O(\exp(-\beta/h))$, for all $\beta < 2\pi d = \pi^2$. We summarize these first analytical results.

Theorem 4.1. For any real ε satisfying (4–4) and any $\beta \in (0, \pi^2)$, there exists $N = N(\varepsilon, \beta) > 0$ such that the area of the lobe between the invariant curves of the map (2–2) satisfies

$$|A| \leq N e^{-\beta/h} \varepsilon \text{ fixed}, \ h \to 0^+.$$ \hfill (5)

The perturbative case. The previous theorem gives only an upper bound for the lobe area and not an asymptotic one (the constant $N(\varepsilon, \beta)$ can blow up when $\beta \to \pi^2$). In particular, it does not exclude the case $A = 0$, that is, it cannot detect effective splitting of separatrices. In the perturbative case $\varepsilon = O(h^p)$, for $p > 6$, the following theorem gives an asymptotic expression for the lobe area in terms of the Melnikov potential, and establishes transversal splitting of separatrices. The version presented here is slightly more general than the one in [Delshams and Ramírez-Ros 1998], since we have dropped out the hypothesis $V'(0) = 2V_1 = 0$ of that paper.

Theorem 4.2. Assume that $\varepsilon = O(h^p)$, $p > 6$. Then, if $\hat{V}(2\pi) \neq 0$, there exists $h^* > 0$ such that the map (2–2) has exactly two transverse, symmetric, primary homoclinic orbits in the first quadrant, for all $0 < h < h^*$. Moreover, they enclose a lobe with area

$$A = \varepsilon e^{-\pi/2h} \left(8\pi \hat{V}(2\pi) + O(h^{2}) \right) \text{ (fixed } \varepsilon, \ h \to 0^+).$$

If $\hat{V}(2\pi) = 0$, there may exist more primary homoclinic orbits, but the area of any lobe is $O(\varepsilon h^2 e^{-\pi/2h})$.

Proof. For $V_1 = 0$, the result above is just the Main Theorem of [Delshams and Ramírez-Ros 1998]. For $V_1 \neq 0$, the perturbative potential $U_1(y) = V(y) - V_1 \log(1 + y^2)$ in (2–2) is no longer an entire function, due to the term $g(y) := V_1 \log(1+y^2)$, and that Main Theorem cannot be applied directly.

However, Theorem 4.2 follows from these observations:

1. As seen in Section 3B, the Melnikov potential $L(t)$ is not affected by the contribution of $L_y(t)$.
2. One can easily bound $g'(\xi^0(t) + \eta)$ in such a way that the estimates of Lemma 3.5 in [Delshams and Ramírez-Ros 1998] do not change.

The rest of the arguments in that paper remain applicable, and the result follows. \hfill □

To the best of our knowledge, this and the theorems in [Delshams and Ramírez-Ros 1998] are the first analytical results about asymptotics for singular separatrix splitting with a complete and rigorous proof.

4B. Singular Numerical Results

In the regular case, we have the formula (3–5) for the lobe area A, in terms of an even analytic function $\Theta^0(h)$, with a fairly simple expression (3–4) for $V'(y) = y, y^3$.

These regular results suggest that in the singular case, for every fixed ε satisfying (4–4), the actual formula for the lobe area may have the form

$$A = \varepsilon e^{-\pi/2h} (\Theta^r(h) + O(e^{-2\pi/\varepsilon})) \text{ (fixed } \varepsilon, \ h \to 0^+),$$ \hfill (5)

for a function $\Theta^r(h)$ given by an asymptotic series of the form

$$\Theta^r(h) = \sum_{n \geq 0} \Theta_n^r h^{2n} \text{ (fixed } \varepsilon, \ h \to 0^+).$$ \hfill (6)

The sign \sim means that the series $\sum_{n \geq 0} \Theta_n^r h^{2n}$ need not be convergent, but only asymptotic; that is, if one retains a finite number of leading terms, the error has the order of the first missing term:

$$\left| \Theta^r(h) - \sum_{n = 0}^{N} \Theta_n^r h^{2n} \right| = O(h^{2N+2}).$$

We are interested in computing a relevant number of the coefficients Θ_n^r for some significant perturbations $\varepsilon V'(y)$, in such a way that we can measure their asymptotic behavior, and describe the analytical properties of the function $\Theta^r(h)$.

To this end, once we have chosen a perturbation $\varepsilon V'(y)$, we compute the lobe area A with a relative
error less than \(\rho \), for a net \(N \) of values of the characteristic exponent \(h \). We take a net equidistant in \(h^2 \), due to the fact that we expect that the asymptotic series (4–6) will contain only even powers of \(h \). That is, we take

\[
N = \{ h_j := j^{1/2} \delta : j = 1, \ldots, l + 1 \}
\]

for some (relatively) small positive number \(\delta \) and some (relatively) large natural number \(l \).

We have chosen the values

\[
\rho = 10^{-900}, \quad \delta = 0.001, \quad l = 99.
\]

(4–7)

Other choices are also possible, but for our purposes it is not worth taking values of \(\rho \) much smaller than \(\exp (-2\pi^2/h_{l+1}) \). We explain this remark.

We do not know how to compute directly the function \(\Theta^r(h) \), but only how to approximate it by \(\varepsilon^{-1} \exp (\pi^2/h) A \). Once the approximate values of \(\Theta^r(h) \) on the net \(N \) are obtained, they will be the input of some algorithm which computes the first \(l + 1 \) asymptotic coefficients \(\Theta^r_n \). This explains why it is pointless to take \(\rho \) too small, \(\rho \approx \exp (-2\pi^2/h) \) being the greatest accuracy we can expect on approximating \(\Theta^r(h) \) by \(\varepsilon^{-1} \exp (\pi^2/h) A \). Since all the values in the net are computed with the same accuracy, we must take \(\rho \) not much smaller than

\[
\exp (-2\pi^2/h_{l+1}) = \max_{1 \leq j \leq l+1} \exp (-2\pi^2/h_j).
\]

An interpolation method based on Neville’s algorithm has been used to compute the asymptotic coefficients of \(\Theta^r(h) \) from the values on the net \(N \). That is, we compute the polynomial

\[
P^c(h) = \sum_{n=0}^{l} P_n^c h^{2n}
\]

that interpolates \(\Theta^r(h) \) on \(N \), and we approximate \(\Theta^r_n \) by \(P_n^c \), for \(n = 0, \ldots, l \). Although equidistant interpolation using polynomials of high degree (in our case, degree \(l \) in \(h^2 \)) is in some cases an ill-conditioned problem, we have checked that the coefficients \(\Theta^r_n \) so obtained are accurate enough for our purposes. Concretely, with the choice (4–7), this method gives at least \(860 - 9n \) significant decimals digits for \(\Theta^r_n \), \(n = 0, \ldots, 95 \). (The accuracy decreases as \(n \) increases, but this seems unavoidable.) This has been checked simply by studying the dependence of the coefficients \(\Theta^r_n \) on the precision \(\rho \) and the degree \(l \).

The nonperturbative case. To avoid the empirically observed factorial increase of the coefficients \(\Theta^r_n \), we introduce other coefficients \(\Xi^r_n \) defined by

\[
\Theta^r_n = (2n)! (2\pi^2)^{-2n} (2n)^4 \Xi^r_n,
\]

expecting that the coefficients \(\Xi^r_n \) will tend to a certain constant \(\Xi^r_\infty \) as \(n \to \infty \). Figure 3 shows clearly this behavior for the two different perturbations: the linear case \(V'(y) = y \) and the cubic case \(V'(y) = y^3 \). The limit constants \(\Xi^r_\infty \) are found by applying an extrapolation method to the coefficients \(\Xi^r_n \) (see also Table 1 on page 40).

In particular, we have \(|\Theta^r_n| \leq C \rho^{2n} \Gamma(2n + 5) \) for some constant \(C \) and \(\rho = 1/2\pi^2 \), that is, the function \(\Theta^r(h) \) of (4–6) is Gevrey-1 of type \(\rho = 1/2\pi^2 \) with respect to the variable \(h \).

FIGURE 3. \(\Xi^r_n \) versus \(n \), for \(\varepsilon = 0.1 \). The dotted lines correspond to the limit value \(\Xi^r_\infty \), found by extrapolation. Left: \(V'(y) = y \) and \(\Xi^r_\infty = -9.7737746885 \ldots \times 10^{-3} \). Right: \(V'(y) = y^3 \) and \(\Xi^r_\infty = -4.6302913918 \ldots \times 10^{-1} \).
We now summarize these numerical results.

Numerical Result 4.3. For the linear and cubic perturbations, the following asymptotic expansion for the lobe area A holds

$$A \sim \varepsilon e^{-\pi^2 \varepsilon \varepsilon / h} \sum_{n \geq 0} \Theta_n^\varepsilon h^{2n} \quad (\varepsilon \text{ fixed, } h \to 0^+),$$

where the coefficients Θ_n^ε satisfy

$$\Theta_n^\varepsilon = (2n)! (2\pi^2)^{-2n} (2n)^2 (2n)^4 (\Xi_n + O(n^{-1})),$$

as $n \to +\infty$, for some constant $\Xi_n \neq 0$. ($\Xi_n < 0$ for $\varepsilon > 0$.)

In other words, formula (4–5) for the lobe area holds for an even $\Theta^\varepsilon(h)$ such that its Borel transform $\tilde{\Theta}^\varepsilon(h) = \sum_n \Theta_n^\varepsilon e^{2n-1}/(2n-1)!$ is convergent for $|k| < 2\pi^2$.

Of course, we believe that the numerical result above holds for any even entire perturbative potential $\varepsilon V(y)$.

The perturbative case. We now check that all the previous objects $\Theta^\varepsilon(h)$, Θ_n^ε, Ξ_n, tend to well-defined limits as $\varepsilon \to 0$.

We begin by describing the results connecting the Gevrey-1 function $\Theta^\varepsilon(h)$ with the Melnikov prediction $\Theta^0(h)$ given in (3–4). Applying formula (3–4), we immediately get

$$\Theta^0(h) = 8\pi^2 \gamma^2 h^{-2}$$

$$= 8\pi^2 \left(1 + \frac{1}{3} h^2 + \frac{16}{45} h^4 + \frac{8}{315} h^6 + O(h^8) \right)$$

for the linear perturbation $\varepsilon V'(y) = \varepsilon y$, and

$$\Theta^0(h) = \frac{8}{3} \pi^4 \gamma^4 h^{-2} (1 + \pi^2 h^{-2})$$

$$= \frac{8}{3} \pi^4 \left(1 + \left(1 + \frac{2}{3} \pi^2 \right) h^2 + \left(\frac{2}{5} + \frac{1}{2} \pi^2 \right) h^4 + \left(\frac{1}{5} + \frac{24}{625} \pi^2 \right) h^6 + O(h^8) \right)$$

for the cubic case $\varepsilon V'(y) = \varepsilon y^3$.

Figure 4 shows numerical results comparing $\Theta^\varepsilon(h)$ with $\Theta^0(h)$, for $\varepsilon \to 0$. The left-hand side graphs show numerical results comparing $h \mapsto \Theta^\varepsilon(h)$ (left) and $h \mapsto (\Theta^\varepsilon(h) - \Theta^0(h))/\varepsilon$ (right), for $V'(y) = y$ (top) and $V'(y) = y^3$ (bottom). The values of ε for the curves in each graph are as follows, from top to bottom: Top and bottom left, $\varepsilon = 0.00, 0.03, 0.05, 0.07$; top right, $\varepsilon = 10^{-5}, 10^{-4}, 10^{-3}, 10^{-2}$; bottom right, $\varepsilon = 0.01, 0.02, 0.01, 0.001$.

FIGURE 4. Graphs of $h \mapsto \Theta^\varepsilon(h)$ (left) and $h \mapsto (\Theta^\varepsilon(h) - \Theta^0(h))/\varepsilon$ (right), for $V'(y) = y$ (top) and $V'(y) = y^3$ (bottom). The values of ε for the curves in each graph are as follows, from top to bottom: Top and bottom left, $\varepsilon = 0.00, 0.03, 0.05, 0.07$; top right, $\varepsilon = 10^{-5}, 10^{-4}, 10^{-3}, 10^{-2}$; bottom right, $\varepsilon = 0.01, 0.02, 0.01, 0.001$.

Delshams and Ramírez-Ros: Singular Separatrix Splitting and the Melnikov Method: An Experimental Study
show that $\Theta^v(h)$ tends uniformly to $\Theta^0(h)$ as $\varepsilon \to 0$, whereas on the right-hand side we see that

$$\varepsilon^{-1}(\Theta^v(h) - \Theta^0(h))$$

tends uniformly to some continuous function. Thus, we conclude that

$$\Theta^v(h) = \Theta^0(h) + O(\varepsilon), \quad \text{uniformly for } h \in (0, 1].$$

Next, we compare the coefficients Θ^v_n in the expression (4-6) of the function $\Theta^v(h)$ with the coefficients Θ^0_n in the Taylor expansion of $\Theta^0(h)$, as $\varepsilon \to 0$.

The results about the convergence of some of the coefficients are shown in Figure 5, where one can see that Θ^v_n tends to Θ^0_n as $\varepsilon \to 0$. It is worth noting that we cannot expect any kind of uniform convergence in $n \geq 0$, since $\Theta^v(h)$ is a Gevrey-1 function (in particular, divergent), whereas $\Theta^0(h)$ is an entire function.

Finally, we study the behavior of the limit constant Ξ^v_∞ that appears in Numerical Result 4.3, for $\varepsilon \to 0$.

We give in Table 1 the values of $\varepsilon^{-1}\Xi^v_\infty$ for several values of the perturbation strength ε. It is evident from this table that $\varepsilon^{-1}\Xi^v_\infty = \Xi^0_\infty + O(\varepsilon)$, where $\Xi^0_\infty = -12\pi^{-4}$ for the linear perturbation and $\Xi^0_\infty = -\frac{16}{3}$ for the cubic one.

We now summarize the numerical results found for the perturbative case.

Numerical Result 4.4. For the linear and cubic perturbations, the objects $\Theta^v(h)$, Θ^v_n, Ξ^v_∞ introduced in

Numerical Result 4.3. tend to well-defined limits as $\varepsilon \to 0$. More precisely:

1. $\Theta^v(h) = \Theta^0(h) + O(\varepsilon)$, uniformly in $h \in (0, 1]$.
2. $\Theta^v_n = \Theta^0_n + O(\varepsilon)$, nonuniformly in $n \geq 0$.
3. $\Xi^v_\infty = \varepsilon \Xi^0_\infty + O(\varepsilon^2)$, where

$$\Xi^0_\infty = \begin{cases} -12\pi^{-4} & \text{if } V'(y) = y, \\ -\frac{16}{3} & \text{if } V'(y) = y^2. \end{cases}$$

Again, we believe that these numerical results hold for any even entire perturbative potential $\varepsilon V'(y)$. Concerning the value of Ξ^0_∞, we conjecture that

$$V'(y) \in \mathbb{Q}[y] \implies \Xi^0_\infty \in \mathbb{Q}[\pi].$$

5. The Computations

In this section, we will express the lobe area as a difference of homoclinic actions. We also explain how to compute this exponentially small difference with arbitrary accuracy as fast as possible.

<table>
<thead>
<tr>
<th>ε</th>
<th>$\varepsilon^{-1}\Xi^v_\infty$</th>
</tr>
</thead>
<tbody>
<tr>
<td>10^{-1}</td>
<td>-0.09773774088</td>
</tr>
<tr>
<td>10^{-2}</td>
<td>-0.12084203100</td>
</tr>
<tr>
<td>10^{-3}</td>
<td>-0.12295874638</td>
</tr>
<tr>
<td>10^{-4}</td>
<td>-0.12316850220</td>
</tr>
<tr>
<td>10^{-5}</td>
<td>-0.12318945876</td>
</tr>
<tr>
<td>10^{-6}</td>
<td>-0.12319155423</td>
</tr>
<tr>
<td>0</td>
<td>-0.12319178706</td>
</tr>
</tbody>
</table>

Table 1. Computed values of Ξ^v_∞ for the linear and cubic perturbations. The last row contains values of $\Xi^0_\infty = \lim_{\varepsilon \to 0} \varepsilon^{-1}\Xi^v_\infty$ found by extrapolation.
5A. The MacKay–Meiss–Percival Action Principle

Let F be an exact map on the plane with the usual symplectic structure $\omega = dx \wedge dy$ and let S be its generating function: $F^*ydx - ydx = dS$. Assume that z_∞ is a hyperbolic fixed point of F and let $W^{u,s}$ be its associated unstable and stable invariant curves. Given a homoclinic orbit $\mathcal{O} = (z_n)_{n \in \mathbb{Z}}$ of F—that is, $\mathcal{O} \subset (W^u \cap W^s) \setminus \{z_\infty\}$ and $F(z_n) = z_{n+1}$—we define its homoclinic action as

$$W[\mathcal{O}] = \sum_{n \in \mathbb{Z}} S(z_n),$$

where, in order to get an absolutely convergent series, the generating function S has been determined by imposing $S(z_\infty) = 0$. Given an integer N, we denote by $\eta^u_s(N)$ the paths contained in the invariant curves $W^{u,s}$ from the hyperbolic point z_∞ to the homoclinic ones z_N. Then the following formulae hold [MacKay et al. 1984; Easton 1991; Delshams and Ramírez-Ros 1997]

$$\sum_{n < N} S(z_n) = \int_{\eta^u_s(N)} ydx, \quad \sum_{n \geq N} S(z_n) = \int_{\eta^u_s(N)} ydx.$$

These formulae are the key tool to get a computable expression for the lobe area A. Let z^\pm be two homoclinic points such that the pieces of the invariant curves between them do not contain other points of their orbits. These pieces enclose a region called a lobe. Let \mathcal{O}^\pm be the homoclinic orbits generated by z^\pm, and set $\eta = \eta^u_s - \eta^u_s$, where $\eta^u_s \subset W^{u,s}$ are paths from z^+ to z^-. Thus, $A = \int_\eta ydx$ is the algebraic area of the lobe; the sign of A depends on the way the perturbed curves cross: $A > 0$ if and only if η is traveled clockwise, as in Figure 2. Finally, from equations (5–1) and (5–2), the lobe area A can be expressed as a difference of homoclinic actions:

$$A = W[0^-] - W[0^+] + \epsilon V'(y) = y^\prime/10$$

Even for moderate values h, this causes an important loss of significant digits, which can only be overcome by computing the actions with more correct digits than the lost ones. For instance, setting $h = 0.1$, numerical computations with $\epsilon V'(y) = y^\prime/10$ give

$$W[0^+] \approx 7.02677 \times 10^{-4} \approx W[0^-],$$

$$A \approx 3.01433 \times 10^{-42},$$

so that in order to get at least one correct (decimal) digit for the lobe area A one must have approximately 40 correct digits for the actions $W[0^\pm]$. This exceeds the range of quadruple-precision arithmetic.

The number P of decimal digits used in the computations is determined by the formula

$$P = Q + [\pi^2 h^{-1} \log_{10} \epsilon] + 20,$$

where Q is the number of significant decimal digits required for the lobe area (usually $Q = 100$ or $Q \approx 900$), and $[\cdot]$ stands for integer part. The second term is a good approximation for the decimal digits lost by cancellation, and the last one is a security term.

The multiple-precision routines were implemented following the algorithms contained in [Knuth 1969]. We have avoided the use of external packages in order to have total control over the program.

The use of expensive multiple-precision arithmetic encourages us to study maps as “cheap” as possible. Accordingly, we have restricted the experiments to the linear and cubic cases ($V'(y) = y, y^3$). For numerical purposes, representation (2–1) is the one that involves fewest operations. Given ϵ and $h > 0$, one computes $\mu = \cosh h$, $\mu_0 = \mu - \epsilon V_1$, and then, in the linear case, each evaluation of (2–1) requires one division, two products, and three sums. In the cubic case, just one more product is needed.

5B. Multiple-Precision Arithmetic

To motivate the multiple-precision arithmetic used in the computations, we note that the lobe areas we want compute are $O(\exp(-\pi^2/h))$, whereas the homoclinic actions $W[0^\pm]$ are much larger since they are of the same order as the region enclosed by the unperturbed separatrix, which is $O(h^3)$. Thus, equation (5–3) must be carefully used due to the strong cancellation in the difference $W[0^-] - W[0^+]$. Even for moderate values h, this causes an important loss of significant digits, which can only be overcome by computing the actions with more correct digits than the lost ones. For instance, setting $h = 0.1$, numerical computations with $\epsilon V'(y) = y^\prime/10$ give

$$W[0^+] \approx 7.02677 \times 10^{-4} \approx W[0^-],$$

$$A \approx 3.01433 \times 10^{-42},$$

so that in order to get at least one correct (decimal) digit for the lobe area A one must have approximately 40 correct digits for the actions $W[0^\pm]$. This exceeds the range of quadruple-precision arithmetic.

The number P of decimal digits used in the computations is determined by the formula

$$P = Q + [\pi^2 h^{-1} \log_{10} \epsilon] + 20,$$

where Q is the number of significant decimal digits required for the lobe area (usually $Q = 100$ or $Q \approx 900$), and $[\cdot]$ stands for integer part. The second term is a good approximation for the decimal digits lost by cancellation, and the last one is a security term.

The multiple-precision routines were implemented following the algorithms contained in [Knuth 1969]. We have avoided the use of external packages in order to have total control over the program.

The use of expensive multiple-precision arithmetic encourages us to study maps as “cheap” as possible. Accordingly, we have restricted the experiments to the linear and cubic cases ($V'(y) = y, y^3$). For numerical purposes, representation (2–1) is the one that involves fewest operations. Given ϵ and $h > 0$, one computes $\mu = \cosh h$, $\mu_0 = \mu - \epsilon V_1$, and then, in the linear case, each evaluation of (2–1) requires one division, two products, and three sums. In the cubic case, just one more product is needed.

5C. Invariant Curves

Local invariant curves associated to weakly hyperbolic fixed points must be developed up to high order (see [Simó 1990] for general comments). This fact is crucial to get the lobe area with the required accuracy as fast as possible: the initial iterates can then be taken far enough from the hyperbolic fixed point and the homoclinic points z^\pm can be attained in a few iterations. In this way, undesirable accumulation of rounding errors due to the large amount of operations is avoided and computing time is reduced.
It is very well-known that there exist analytic parameterizations \(\sigma^u \) : \(\mathbb{R} \to \mathcal{W}^u \) of the invariant curves such that \(F(\sigma^u(r)) = \sigma^u(\lambda r) \) and \(F(\sigma^u(r)) = \sigma^u(\lambda^{-1} r) \), where \(\lambda \) is the characteristic multiplier of the hyperbolic point. Such parameterizations conjugate the map \(F \) to \(r \to \lambda^2 r \) on the invariant curves, and are determined except for a multiplicative constant in the variable \(r \). (A natural parameterization is obtained via the change of variables \(r = \exp t \).)

In order to accelerate the numerical computation of these parameterizations we must take advantage of the symmetries, reversors, and peculiarities of the map (2-2).

First, \(\sigma^u \) and \(\sigma^s \) are odd, since so is \(F \). Second, the reversors \(R^+ \) and \(R^- = F \circ R^+ \) allow us to obtain a parameterization of the stable curve in terms of the unstable one:

\[
\sigma^u(r) := R^+(\sigma^u(r)) = R^-(\sigma^u(\lambda r)).
\]

Finally, the particular form of the map (2-2) implies that \(\sigma^u(r) \) can be written as

\[
\sigma^u(r) = \left(\zeta(\lambda^{-1/2} r), \zeta(\lambda^{1/2} r) \right),
\]

for some analytic odd function \(\zeta : \mathbb{R} \to \mathbb{R} \) such that \(\zeta(\lambda r) + \zeta(\lambda^{-1} r) = U^r(\zeta(r)) \).

Therefore, to get the Taylor expansion of the invariant curves it is enough to solve equation (5-6). Set \(\zeta(r) = \sum_{k \geq 0} \zeta_k r^{2k+1} \) and

\[
Q(\zeta(r)) = \sum_{k \geq 0} q_k r^{2k+1},
\]

where \(Q(y) := U^r(y) - 2\mu y = O(y^3) \). From (5-6), we get \((\lambda^{2k+1} - 2\mu + \lambda^{-2k+1}) \zeta_k = q_k \), for all \(k \geq 0 \). Since \(Q(y) \) begins with cubic terms, \(q_0 \) is zero and \(q_k \) only depends on \(\zeta_0, \ldots, \zeta_{k-1} \). Besides, \(2\mu = \lambda + \lambda^{-1} \) (see equalities (2-3)) implies that \(\lambda^2 - 2\mu + \lambda^{-1} = 0 \) if and only if \(t = \pm 1 \). Thus, the coefficient \(\zeta_0 \) is the free parameter that multiplies the variable \(r \), and

\[
\zeta_k = \left(\lambda^{2k+1} - 2\mu + \lambda^{-2k+1} \right)^{-1} q_k, \quad \text{for } k \geq 1.
\]

If all the coefficients are known up to the index \(k - 1 \), we can compute successively \(q_k \) and \(\zeta_k \), and this recurrence allows us to compute the coefficients \(\zeta_k \) up to any fixed index \(K \).

To choose \(\zeta_0 \) appropriately, we take into account that in the unperturbed case \(\epsilon = 0 \) the parameterization \(\zeta_0(r) \) is given by \(\zeta_0(\exp t) = \xi_0(t) \) (see (2-4) and (2-5)), and it takes the form

\[
\zeta_0(r) = 2\gamma \left(\frac{r}{1 + r^2} = 2\gamma \sum_{k \geq 0} \left(-1 \right)^k r^{2k+1}, \right.
\]

that is, \(\zeta_0(r) \) has only odd Taylor coefficients, given by \((-1)^k 2\gamma \).

In the perturbed case, we choose \(\zeta_0 = 2\gamma \) to get controlled growth for the coefficients \(\zeta_k \):

\[
\zeta_k \approx (-1)^k \zeta_0 = (-1)^k 2\gamma.
\]

This stable behavior of the coefficients \(\zeta_k \) is particularly suitable for their numerical computation, and makes the previous algorithm very robust in avoiding cancellation problems.

5D. Homoclinic Points

In order to find numerically the symmetric homoclinic points \(z^\pm \in C^\pm \), we move along the unstable curve \(\mathcal{W}^u \) to the first point that intersects \(C^\pm \). We explain the process for \(z^+ \); the computation of \(z^- \) follows the same lines.

First, given the number \(P \) of decimal digits used in the arithmetic, and an order \(K \) for the invariant curve expansions, we must choose a positive number \(\delta \) such that

\[
E_K(\delta) := \left| \zeta(\delta) - \sum_{k \leq K} \zeta_k \delta^{2k+1} \right| = \sum_{k > K} \zeta_k \delta^{2k+1} < 10^{-P},
\]

and as large as possible, because the size of \(\delta \) determines the number \(N \) of iterates needed to reach the homoclinic point. From equation (5-8), we get

\[
E_K(\delta) < 2 \delta^{2K+3} < \delta^{2K+3},
\]

for \(h \) small and \(\delta \in (0,1) \). Thus, a good choice is \(\delta^{2K+3} = \rho = 10^{-P} \), that is,

\[
\delta = 10^{-P/(2K+3)}.
\]

Once we have determined \(\delta \), we find the first natural \(N \) such that \(F^N(\sigma^u(\delta)) \) and \(F^{N+1}(\sigma^u(\delta)) = F^N(\sigma^u(\lambda \delta)) \) are separated by \(C^+ = \{ y = x \} \), so that the function

\[
g^+(r) = \pi_1 F^N(\sigma^u(r)) - \pi_2 F^N(\sigma^u(r)), \quad (5-9)
\]

has a zero \(r^+ \) in the interval \([\delta, \lambda \delta]\). Here \(\pi_1(z) \) and \(\pi_2(z) \) stand for the projections on the first and second components of \(z \), respectively.

Next we use Newton’s method to determine \(r^+ \) with the precision \(\rho \) we are dealing with. For the sake of efficiency, we first work in double precision and later refine the result by doubling the number of digits in multiple-precision arithmetic after each Newton iteration. (The convergence of Newton’s method is quadratic.) In this way, a complete run
of Newton’s method takes at most thrice the time the last iteration takes.

Finally, \(z^+ = F^N(\sigma^u(r^+)) = \sigma^u(r^+) \) is the homoclinic point over \(C^+ \) we are looking for, where \(r^+ = \lambda^N \hat{r}^+ \). In the unperturbed case \(r^+ = 1 \), because \(\zeta_0(r) = \zeta_0(1/r) \); see (5–7). Therefore, for moderate perturbation strengths \(\varepsilon \),

\[
e^{-Nh} = \lambda^{-N} \approx \hat{r}^+ \in [\delta, \lambda \delta],
\]

where \(\delta = 10^{-P/(2K+3)} \), and we can express (approximately) the number of iterates \(N \) in terms of the characteristic exponent \(h \), the precision \(P \), and the order \(K \):

\[
N \approx \frac{P}{(2K+3)h \log_{10} e}.
\]

(5–10)

Numerical experiments show that this fit gives, for \(h \) ranging in \((0, 0.1]\) and \(\varepsilon \) in \((−0.5, 0.5]\), a maximum relative error below 4%, so that it can be used to approximate the index \(K \) minimizing the computer time. In order to do it, we move along the index \(K \), determine the number of iterations \(N \) by means of (5–10), and estimate \(a \ priori \) the computer time counting the total number of products and divisions performed in the algorithm. We then choose the index \(K \) that gave the smallest estimate. This method is very accurate: experience shows that the true optimal choice of \(K \) is at most ten per cent faster than our estimate.

We explain how, for each value of \(K \), the computer time can be estimated \(a \ priori \). The algorithm to get the lobe area \(A \) has several parts: the expansion of the local invariant curves, the Newton’s method to find the pair of homoclinic orbits, the computation of the action of each homoclinic orbit, and other negligible parts. For the sake of brevity, we shall only discuss how to estimate the time needed for Newton’s method. We can normalize the time scale in such a way that one product takes just one unit of time. Then numerical experiments show that one division takes approximately 2.75 units of time, for large enough \(P \).

Let \(\#_x \) and \(\#_z \) be respectively the number of products and divisions required to evaluate the map (2–1) together with its differential. (Of course, \(\#_x \) and \(\#_z \) depend on the perturbation; for instance, in the linear case \(\#_x = 6 \) and \(\#_z = 1 \), whereas in the cubic one \(\#_x = 7 \) and \(\#_z = 1 \).) Then the evaluation of the function \(g^+(r) \) given in (5–9) together with its differential takes \(4K + (\#_x + 2.75 \#_z)N \) units of time. The term \(4K \) comes from Horner’s rule for evaluating the Taylor expansions of \(\sigma^u(r) \) and \(d\sigma^u(r) \). The second term, \((\#_x + 2.75 \#_z)N \), comes from the computation of \(F^N(z) \) and its differential. Therefore, the time spent on Newton’s method is \(6(4K + (\#_x + 2.75 \#_z)N) \), since, as already said, a run of Newton’s method takes at most thrice the time needed for the last iteration, and there are two homoclinic orbits to compute (\(6 = 2 \times 3 \)).

The other parts of the algorithm can be analyzed in the same way, and so one gets a closed formula \(\mathcal{T} = \mathcal{T}(K) \) for the estimated computed time \(\mathcal{T} \) in terms of the order \(K \). Then we take as the (estimated) optimal order the point that realizes the minimum of the function \(\mathcal{T}(K) \). See Figure 6 for a sample of this idea.

To conclude, we note that the reversibility of the map allows us to reduce the computation of homoclinic points to a one-dimensional root-finding problem, instead of a two-dimensional one. This simplifies the study, avoids stability problems and saves computer time.

5E. Lobe Areas

The lobe area \(A \) is a difference of actions, according to formula (5–3). Therefore, it is enough to compute the actions \(W[0^\pm] \), but this is not so simple as applying directly formula (5–1). We describe briefly the problem that this simple method has. For the sake of brevity, we restrict our study to the homoclinic orbit \(0^+ \).

The problem is to compute the action

\[
W[0^+] = \sum_{n \in \mathbb{Z}} S(z_n^+),
\]

where \(z_n^+ = F^n(z^+) \), and \(z^+ = \sigma^u(r^+) \in C^+ \) is the homoclinic point previously computed. Obviously, the action must be computed to the precision \(\rho = 10^{-P} \leq \exp(-\pi^2/h) \) we are dealing with. The simplest way to get the infinite sum is to cut off the terms with \(|n| > L \), for some threshold \(L \) chosen in such a way that \(\sum_{|n| \leq L} S(z_n^+) < \rho \).

The generating function of the map (2–1) is

\[
S(x, y) = −xy + \mu_0 \log(1 + y^2) + \varepsilon V(y).
\]

(5–11)

From \(S(z) = O(z^2) \), \(\sigma^u(r) = O(hz) \), and \(r^+ = O(1) \), we get

\[
S(z^+) = \begin{cases}
S(\sigma^u(\Lambda^{-1}[^+]) = O(h^2 e^{-2h^4}), & n \to -\infty, \\
S(\sigma^u(\Lambda^{-1}[^+]) = O(h^2 e^{-2h^4}), & n \to +\infty.
\end{cases}
\]
Now, we note that the lowest natural number L such that
\[\sum_{|n|>L} h^2 \exp(-2|n|h) < \rho \leq \exp(-\pi^2/h) \]
becomes prohibitive for small h.

We now proceed to explain a better method, requiring only $O(h^{-1})$ evaluations of $S(z)$. First, the reversibility of the map allows us to reduce the computational effort by half. Indeed, we can write the action as a difference of path integrals, as in (5–2),
\[W[0^+] = \sum_{n \in \mathbb{Z}} S(z^+_n) = \int_{\eta^u} y \, dx - \int_{\eta^s} y \, dx, \]
where η^u, η^s are the paths contained in the invariant curves W^u, W^s from the saddle point $z_\infty = (0,0)$ to the homoclinic point $z^+ = z^+_0 = (x^+, x^+) \in C^+$.

Since $\eta^u = R^+ \eta^u$, we get
\[W[0^+] = \int_{\eta^u} (y \, dx - x \, dy) = \int_{\eta^u} (2y \, dx - d(xy)) = -(x^+)^2 + 2 \sum_{n < 0} S(z^+_n), \]
where in the last equality we have again used (5–2).

To compute the last sum, we split it as follows:
\[\sum_{n < 0} S(z^+_n) = \Sigma_1 + \Sigma_2, \]
where N is the number of iterates that it takes to arrive at z^+ from the fundamental domain in which the Taylor expansion of $\sigma^u(r)$ holds with the required precision ρ.

We write the infinite sum Σ_1 as a path integral along the path $\eta \subset W^u$ from the saddle point z_∞ to the homoclinic point $z^+ = z^+_N = (\hat{r}^+, \hat{r}^+) \in [\delta, \lambda \delta]$:
\[\Sigma_1 = \sum_{n < -N} S(z^+_n) = \int_{\eta^u} y \, dx = \lambda^{-1/2} \int_0^{\hat{r}^+} \zeta(\lambda^{1/2} r) \zeta'(\lambda^{-1/2} r) \, dr, \]
which can be computed with the required accuracy using the Taylor expansion of $\zeta(r)$. The second sum $\sum_{n=-N}^{-1} S(z^+_n)$ is finite with only $N = O(h^{-1})$ terms, so it can be computed easily in a relatively fast way. A crucial factor in increasing the efficiency of the program is the number of logarithmic evaluations required to perform this finite sum, because of the expensive multiple-precision arithmetic we are working with. Although equation (5–11) contains a logarithm, the sum
\[\sum_{n=-N}^{-1} S(z^+_n) \]
requires just one logarithmic evaluation, since a sum of logarithms can be rewritten as the logarithm of a product.

Now we are ready to compare the two methods. The first one required at least $O(h^{-2})$ evaluations of
the generating function $S(z)$, whereas the second requires only $O(h^{-1})$ evaluations plus the computation of an integral by Taylor’s method, which takes less time than the $O(h^{-1})$ evaluations of $S(z)$. Therefore, the difference is at least one order of magnitude in h.

To end this section, we show some values of P, K, and N in Table 2. These results were obtained setting $\varepsilon = 0.1$ and requiring $Q = 900$ correct decimal digits for the lobe area. We also display the true computer time T in seconds. The choice $\varepsilon = 0.1$ has very little influence on the quantities P, K, N, and T. In fact, P does not depend on the perturbation, but only on Q and h. As expected, the computations in the linear case $V'(y) = y$ are somewhat faster than in the cubic case $V'(y) = y^3$. This is for two reasons:

1. The evaluation of the map F with a cubic perturbation requires one more product than with the linear one.

2. The computation of the Taylor expansion of the local invariant curve is more expensive in the cubic case, because the recurrence formulae for the Taylor coefficients require more products.

<table>
<thead>
<tr>
<th>h</th>
<th>P</th>
<th>K</th>
<th>N</th>
<th>T</th>
<th>K</th>
<th>N</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.009</td>
<td>1401</td>
<td>204</td>
<td>876</td>
<td>1652</td>
<td>195</td>
<td>916</td>
<td>1879</td>
</tr>
<tr>
<td>0.008</td>
<td>1459</td>
<td>215</td>
<td>974</td>
<td>1935</td>
<td>206</td>
<td>1016</td>
<td>2205</td>
</tr>
<tr>
<td>0.007</td>
<td>1536</td>
<td>230</td>
<td>1096</td>
<td>2369</td>
<td>220</td>
<td>1145</td>
<td>2736</td>
</tr>
<tr>
<td>0.006</td>
<td>1637</td>
<td>248</td>
<td>1264</td>
<td>3038</td>
<td>237</td>
<td>1322</td>
<td>3379</td>
</tr>
<tr>
<td>0.005</td>
<td>1782</td>
<td>271</td>
<td>1511</td>
<td>4134</td>
<td>259</td>
<td>1581</td>
<td>4643</td>
</tr>
<tr>
<td>0.004</td>
<td>1994</td>
<td>305</td>
<td>1879</td>
<td>6195</td>
<td>291</td>
<td>1969</td>
<td>7091</td>
</tr>
<tr>
<td>0.003</td>
<td>2350</td>
<td>356</td>
<td>2532</td>
<td>11154</td>
<td>339</td>
<td>2658</td>
<td>12613</td>
</tr>
<tr>
<td>0.002</td>
<td>3068</td>
<td>447</td>
<td>3951</td>
<td>31614</td>
<td>426</td>
<td>4145</td>
<td>36389</td>
</tr>
<tr>
<td>0.001</td>
<td>5211</td>
<td>677</td>
<td>8869</td>
<td>207007</td>
<td>644</td>
<td>9321</td>
<td>240530</td>
</tr>
</tbody>
</table>

TABLE 2. Values of P (decimals digits in the multiple-precision arithmetic), K (local order), N (iterations), and T (computing time in seconds), for $Q = 900$ (decimal digits required for the lobe area) and $\varepsilon = 0.1$. The runs were performed on a Pentium 200 machine under Linux.

6. FURTHER EXPERIMENTS

An interesting problem is to find an algorithm for computing the coefficients Θ_k in equations (4–5), (4–6), different from the one used in this paper, which is based on the numerical continuation of lobe areas for many values of h, jointly with an extrapolation method. These coefficients are the unknown component in the exponentially small asymptotic formula for the splitting size. For some celebrated standard-like maps, similar quantities (such as Lazutkin’s constant $\omega_0 = 1118.827706\ldots$ for the standard map) have been defined by means of nonlinear parameterless problems that only can be solved numerically [Gelfreich et al. 1991; 1994; Hakim and Mallick 1993; Suris 1994; Chernov 1995; Nikitin 1995; Treschev 1996]. It would be useful to find such a problem for Θ_k, since the absence of parameters makes easier its resolution.

To perform a similar study for (large or small) perturbations of other integrable maps is the most natural continuation of this work.

As a first example, of which the McMillan map is a particular case, we mention the integrable standard-like maps given by Suris [1989]. For instance, [Lomelí and Meiss 1996] contains a exponentially small Melnikov prediction in the characteristic exponent for the lobe area in a perturbed trigonometric Suris map, together with a numerical study in double-precision of its validity. It would be interesting to work out these computations in multiple-precision.

As a second example, we mention the twist maps associated to the perturbations of elliptic billiards. The papers [Levallois and Tabanov 1993; Tabanov 1994; Delshams and Ramírez-Ros 1996; Lomelí 1996; Levallois 1997] contain exponentially small predictions for the splitting size when the eccentricity is small, that is, when the unperturbed ellipse is near a circle. The numerical experiments can be especially helpful, since there is still a lack of analytical results. However, it is worth noting that the numerical study of billiards is somewhat harder than the one performed here. This has to do with the fact that the twist maps associated to billiards have no explicit expressions, since they are defined implicitly by means of their generating functions. Therefore, the evaluation of the map is more expensive: one needs to solve implicit equations with trigonometric terms.

Volume-preserving maps form the third example where a detailed numerical analysis would be interesting. In [Amick et al. 1992; Rom-Kedar et al. 1993], one can find several families of volume-preserving maps, depending on a small parameter h, such that the splitting distance between certain invariant curves behaves with respect to h as in (1–2).
The arguments in these papers are semi-analytical. It would be interesting to study numerically the asymptotic behavior of these distances. Maybe a behavior like (1–3) or even (1–4) may be established if multiple-precision arithmetic is used.

As a last application, we consider the symplectic high-dimensional case. In [Delshams and Ramírez-Ros 1997] we obtained exponentially small asymptotic predictions via Melnikov methods for some perturbations of the McLachlan map (a high-dimensional generalization of the McMillan map studied here). The computations in the high-dimensional case must be performed very carefully. The main difficulties associated with the increase in dimension are the computation of the invariant manifolds, which takes much longer than in the planar case, and the sensitive dependence of Newton’s method on the initial approximation. Following [Tabacman 1995], we suggest a way to overcome these problems. The first difficulty can be ameliorated using the Lagrangian property of the invariant manifolds of symplectic maps, which can be written as graphs of gradients of a scalar function called generating function of the manifold. The idea is to compute the Taylor expansion of such generating functions instead of dealing with the invariant manifolds. To overcome the sensitive dependence of Newton’s method on the initial approximation, one can use first the method developed in [Tabacman 1995] to find homoclinic points, based on the computation of critical points of a scalar function, usually a more robust problem. Then one can refine the homoclinic point using the Newton’s method (or a quasi-Newton method), which converges faster.

Finally, we want to mention an outstanding conjecture, due to C. Simó, on the asymptotic behavior of the splitting size for some area-preserving maps like the standard map, the Hénon map, the twist map, and the perturbed McMillan map studied here. Roughly speaking, this conjecture claims that

\[
\text{splitting size} = \sum_{m \geq 1} h^{m} e^{-m\beta/h} \Theta_m(h),
\]

(6–1)

\[
\Theta_m(h) \text{ Gevrey-1 and } \Theta_m(0) \neq 0;
\]

that is, smaller exponentials must be added to (1–4) in order to get a more exact formula. These exponentials do not play any rôle for “small” values of \(h \), but they become significant for “larger” ones. There are strong reasons for believing that (6–1) holds, but nowadays there is a lack of analysis and computer power to tackle this conjecture. We hope that this will be a stimulating challenge for some readers.

ACKNOWLEDGMENTS

This work was partially supported by the EC grant ERBCHRXCT-940460. Research by A. Delshams is also supported by the Spanish grant DGICYT PB94-0215 and the Catalan grant CIRIT 1996SGR-00105. Research by R. Ramírez-Ros is also supported by the U.P.C. grant PR9409. Both authors wish to express their appreciation to R. de la Llave and C. Simó for several private communications, and to À. Jorba for his help in the design of the multiple-precision routines. It is also a pleasure to thank A. Benseny and E. Fontich for very stimulating discussions and fruitful remarks. This work was finished while Delshams was a visitor at the Institute for Mathematics and its Applications in Minneapolis, for whose hospitality he is very grateful.

ELECTRONIC AVAILABILITY

The code for the programs used in this paper is available at ftp://ftp-mat.upc.es/pub/preprints/97/9705delsh.zip. Preprints of the authors’ works cited here are also available on the same server.

REFERENCES

