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Abstract: We study the splitting of invariant manifolds of whiskered (hyperbolic) tori
with three frequencies in a nearly-integrable Hamiltonian system, whose hyperbolic part
is given by a pendulum. We consider a 3-dimensional torus with a fast frequency vector
ω/
√

ε, with ω = (1,�,˜�) where � is a cubic irrational number whose two conjugates
are complex, and the components ofω generate the fieldQ(�). A paradigmatic case is the
cubic golden vector, given by the (real) number � satisfying �3 = 1−�, and ˜� = �2.
For such 3-dimensional frequency vectors, the standard theory of continued fractions
cannot be applied, so we develop a methodology for determining the behavior of the
small divisors 〈k, ω〉, k ∈ Z3. Applying the Poincaré–Melnikovmethod, this allows us to
carry out a careful study of the dominant harmonic (which depends on ε) of theMelnikov
function, obtaining an asymptotic estimate for the maximal splitting distance, which is
exponentially small in ε, and valid for all sufficiently small values of ε. This estimate
behaves like exp{−h1(ε)/ε1/6} and we provide, for the first time in a system with 3
frequencies, an accurate description of the (positive) function h1(ε) in the numerator of
the exponent, showing that it can be explicitly constructed from the resonance properties
of the frequencyvectorω, andproving that it is a quasiperiodic function (andnot periodic)
with respect to ln ε. In this way, we emphasize the strong dependence of the estimates
for the splitting on the arithmetic properties of the frequencies.

1. Introduction and Setup

1.1. Background and state of the art. In nearly-integrable Hamiltonian systems with
n ≥ 2 degrees of freedom, irregular motion may take place near (n − 1)-dimensional
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whiskered tori (invariant hyperbolic tori) and their whiskers (invariant manifolds). In
adequate scaled canonical coordinates (see for instance [DG01,Loc90,DGG14a] and
references therein for more details about this introductory paragraph), these whiskered
tori have frequency vectors with fast frequencies and their non-small hyperbolic part
is typically given by a pendulum. The fundamental phenomenon guaranteeing irregular
behavior near these whiskered tori is the non-coincidence of their whiskers, which is
called the splitting of separatrices. The size of this splitting provides a measure of the
irregular motion (and also of the global instability for n ≥ 3 degrees of freedom) but is
non-easily computable, since it turns out to be exponentially small with respect to the
perturbation parameter. To worse things, for n ≥ 3, the exponent in the splitting depends
strongly on the arithmetic properties of the (n−1)-dimensional frequency vectors of the
whiskered torus. Fortunately, for n = 3 the standard theory of continued fractions can
be successfully applied to the 2-dimensional frequency vectors of the whiskered tori to
compute the splitting. Nevertheless, for n ≥ 4 degrees of freedom, the standard theory
of continued fractions cannot be applied to (n − 1)-dimensional frequency vectors, and
so far there are no computations of the exponentially small splitting of separatrices for
whiskered tori with dimension greater or equal than three.

This paper is dedicated to the study and computation of the exponentially small
splitting of separatrices, in a perturbed Hamiltonian system with 4 degrees of freedom,
associated to a 3-dimensional whiskered torus with a cubic frequency vector. More
precisely, we start with an integrable Hamiltonian H0 possessing whiskered tori with a
homoclinic whisker or separatrix, formed by coincident stable and unstable whiskers,
andwe focus our attention on a concrete toruswith a frequency vector of fast frequencies:

ωε = ω√
ε
, ω = (1,�,˜�), (1)

with a small (positive) parameter ε, and we assume that the frequency ratios� = ω2/ω1
and ˜� = ω3/ω1 (it can be assumed that ω1 = 1) generate a complex cubic field (also
called a non-totally real cubic field). This amounts to assume that� is a cubic irrational
number (a real root of a polynomial of degree 3 with rational coefficients, that is not
rational or quadratic) whose two conjugates are not real, and ˜� = a0 + a1� + a2�2,
with a0, a1, a2 ∈ Q, a2 �= 0 (see Sect. 2.1 for more details). A paradigmatic example
is the vector ω = (1,�,�2), where � is the cubic golden number (the real number
satisfying �3 = 1−�, see Sect. 2.3).

If we consider a perturbed Hamiltonian H = H0 +μH1, where μ is small, in general
the whiskers do not coincide anymore. This phenomenon has got the name of splitting
of separatrices, which is related to the non-integrability of the system and the existence
of chaotic dynamics, and plays a key role in the description of Arnold diffusion. If
we assume, for the two involved parameters, a relation of the form μ = εr for some
r > 0, we have a problem of singular perturbation and in this case the splitting is
exponentially small with respect to ε. Our aim is to provide an asymptotic estimate for
the maximal splitting distance, and to show the dependence of such estimate on the
arithmetic properties of the cubic number �.

To provide ameasure for the splitting, we can restrict ourselves to a transverse section
to the unperturbed separatrix, and introduce the splitting function θ ∈ T3 �→M(θ) ∈
R3, providing the vector distance between the whiskers on this section, along the com-
plementary directions. In this way, one obtains a measure for the maximal splitting
distance as the maximum of the function |M(θ)|. On the other hand, in suitable coordi-
nates the splitting function is the gradient of a scalar function called splitting potential
[Eli94,DG00],
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M(θ) = ∇L(θ), (2)

which implies that there always exist homoclinic orbits, which correspond to the zeros
of M(θ), i.e. the critical points of L(θ).

In order to provide a first order approximation to the splitting function, with respect
to the parameter μ, it is very usual to apply the Poincaré–Melnikov method, introduced
by Poincaré in his memoir [Poi90] and rediscovered much later byMelnikov and Arnold
[Mel63,Arn64]. This method provides an approximation

M(θ) = μM(θ) +O(μ2) (3)

given by the (vector) Melnikov function M(θ), defined by an integral (see for instance
[Tre94,DG00]). As a result, one obtains asymptotic estimates for the maximum of the
function |M(θ)|, provided μ is small enough. In fact, the Melnikov function can also be
written as the gradient of a scalar function called theMelnikov potential:M(θ) = ∇L(θ).

However, the case of fast frequenciesωε as in (1), with a perturbation of orderμ = εr ,
for a given r as small as possible, turns out to be, as said before, a singular problem. The
difficulty comes from the fact that the Melnikov function M(θ) is exponentially small in
ε, and the Poincaré–Melnikov method can be directly applied only if one assumes that
μ is exponentially small with respect to ε (see for instance [DG01] for more details). In
order to validate the method in the case μ = εr , one has to ensure that the error term is
also exponentially small, and that the Poincaré–Melnikov approximation dominates it.
To overcome such a difficulty in the study of the exponentially small splitting, Lazutkin
introduced in [Laz03] the use of parameterizations of the whiskers on a complex strip
(whose width is defined by the singularities of the unperturbed parameterized separatrix)
by periodic analytic functions, togetherwith flow-box coordinates. This toolwas initially
developed for theChirikov standardmap [Laz03], and allowed several authors to validate
the Poincaré–Melnikovmethod for Hamiltonians with one and a half degrees of freedom
(with only 1 frequency) [HMS88,Sch89,DS92,DS97,Gel97] and for area-preserving
maps [DR98].

Later, those methods were extended to the case of whiskered tori with 2 frequencies:
ω = (1,�). In this case, the arithmetic properties of the frequencies play an important
role in the exponentially small asymptotic estimates of the splitting function, due to
the presence of small divisors of the form k1 + k2� for integer numbers k1, k2. Such
arithmetic properties can be carefully studied with the help of the standard theory of
continued fractions. The role of the small divisors in the estimates of the splitting was
first noticed by Lochak [Loc90] (who obtained an upper bound with an exponent coin-
ciding with Nekhoroshev resonant normal forms [Nek77]), and also by Simó [Sim94]
(generalizing an averaging procedure introduced in [Nei84]). Analogous estimates could
also be obtained from a careful averaging out of the fast angular variables [Tre97,PT00],
at least concerning sharp upper bounds of the splitting.

On the other hand, a numerical detection of asymptotic estimates was carried out
in [Sim94], and they were rigorously proved in [DGJS97] for the quasiperiodically
forced pendulum, assuming a polynomial perturbation in the coordinates associated to
the pendulum. A more general (meromorphic) perturbation was considered in [GS12].
It is worth mentioning that, in some cases, the Poincaré–Melnikov method does not
predict correctly the size of the splitting, as shown in [BFGS12], where a Hamilton–
Jacobi method is instead used. This method had previously been used in [Sau01,LMS03,
RW00,Bal06]. Similar asymptotic results were obtained in [DG04] for the concrete case
of the famous golden ratio � = (

√
5− 1)/2, and in [DGG14c] for the case of the silver
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ratio� = √2−1, and generalized in [DGG16] to any quadratic frequency ratio, and in
[DGG14b] to any frequency ratio of constant type, i.e. with bounded partial quotients.
Very recent results for frequency vectors with unbounded partial quotients can be found
in the papers [FSV18a,FSV18b], which provide a heuristic analysis of the splitting.

In this paper, we consider a 3-dimensional torus with a frequency vector ω as in (1)
whose ratios generate a complex cubic field (for short, we say a cubic vector “of complex
type”). An important difference with respect to the 2-dimensional case is that in the 3-
dimensional case there is no standard theory of continued fractions allowing a simple
analysis of the small divisors. As a paradigmatic example, we consider ω = (1,�,�2)

where � ≈ 0.682328 is the real number satisfying �3 = 1 − �, which has been
called the cubic golden number (see for instance [HK00]). Other famous exemples have
been considered in [Cha02] (see also [Loc92] for an account of examples and results
concerning cubic frequencies).

Our goal is to develop a methodology, based on iteration matrices from a result by
Koch [Koc99] (see Sect. 2.1) allowing us to study the resonances of the given cubic
frequency vector. As a result, we obtain asymptotic estimates for the maximal splitting
distance, whose dependence on ε is described by a positive piecewise-smooth function
denoted h1(ε) (see Theorem 1). In this paper it is proved for the first time that this
function is quasiperiodic (and not periodic) with respect to ln ε with two frequencies
α1 and α2, and its behavior depends strongly on the arithmetic properties of the cubic
frequency vector ω. In particular, we show that the function h1(ε) can be constructed
explicitly from the study of the quasi-resonances of the frequency vector ω, and we can
also determine explicitly the frequencies α1 and α2, as well as upper and lower bounds
for h1(ε). In this way, we provide an indication of the complexity of the dependence on
ε of the splitting.

Such results were partially established in the announcement [DGG14a] with a par-
allel study of the quadratic and cubic cases (with 2 and 3 frequencies, respectively),
obtaining also exponentially small estimates for the maximal splitting distance, show-
ing the periodicity of the function h1(ε) with respect to ln ε in the quadratic case (we
also stress that this function becomes a constant in the case of only 1 frequency, see for
instance [DS97]). Nevertheless, in [DGG14a] the quasiperiodicity of the function h1(ε)
in the cubic case was only conjectured.

We point out that the aim of this paper is to obtain estimates for themaximal splitting
distance, like in our paper [DGG14b] where we considered frequencies of constant
type for a 2-dimensional torus. This is in constrast with most of the papers quoted in
the previous paragraphs, which rather focus their attention on the transversality of the
splitting. The study of the transversality could also be carried out with the methodology
developed here, bymeans of amore accurate study, as done in [DG04,DGG14c,DGG16]
for the quadratic case (see Remark 2(b)). We stress that, for some purposes, it is not
necessary to establish the transversality of the splitting, and it can be enough to provide
estimates of the maximal splitting distance. Indeed, such estimates imply the existence
of splitting between the invariant manifolds, which provides a strong indication of the
non-integrability of the system near the given torus, and opens the door to the application
of topological methods [GR03,GL06] for the study of Arnold diffusion in such systems.

1.2. Setup. Here we describe the nearly-integrable Hamiltonian system under consid-
eration. In particular, we study a singular or weakly hyperbolic (a priori stable) Hamil-
tonian with 4 degrees of freedom possessing a 3-dimensional whiskered torus with fast
frequencies. In canonical coordinates (x, y, ϕ, I ) ∈ T×R×T3×R3, with the symplectic
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form dx ∧ dy + dϕ ∧ dI , the Hamiltonian is defined by

H(x, y, ϕ, I ) = H0(x, y, I ) + μH1(x, ϕ), (4)

H0(x, y, I ) = 〈ωε, I 〉 + 1

2
〈�I, I 〉 + y2

2
+ cos x − 1, (5)

H1(x, ϕ) = h(x) f (ϕ). (6)

Our system has two parameters ε > 0 and μ, linked by a relation μ = εr , r > 0 (the
smaller r the better). Thus, if we consider ε as the unique parameter, we have a singular
problem for ε→ 0. See [DG01] for a discussion about singular and regular problems.

Recall that we are assuming a vector of fast frequencies ωε = ω/
√

ε with a cubic
vector ω ∈ R3 of “complex type”, as introduced in (1). It is a well-known property
(and we prove it in Sect. 2.2; see also [Cas57, Sect. V.3] or [Sch80, Sect. II.4]) that any
(complex or totally real) cubic vector satisfies a Diophantine condition

|〈k, ω〉| ≥ γ

|k|2 , ∀k ∈ Z3\ {0} , (7)

with some γ > 0 (the exponent 2 in this condition is the minimal one among vectors in
R3). We also assume in (4) that � is a symmetric (3× 3)-matrix, such that H0 satisfies
the condition of isoenergetic nondegeneracy

det

(

� ω

ω� 0

)

�= 0. (8)

For the perturbation H1 in (5), we deal with the following analytic periodic functions,

h(x) = cos x, f (ϕ) =
∑

k∈Z
fk cos(〈k, ϕ〉 − σk), with fk = e−ρ|k| and σk ∈ T

(9)

(we write the harmonics of Fourier expansions in the form of amplitude and phase)
where we introduce, in order to avoid repetitions in the Fourier series, the set

Z = {k ∈ Z3 : k2 ≥ 1 or (k2 = 0, k3 ≥ 1) or (k2 = k3 = 0, k1 ≥ 0)}, (10)

with k = (k1, k2, k3) (the specific choice of k2 being positive, which is not relevant,
allows us to agree with the definition of the set P in (44)). Notice that, for any couple
±k of integer vectors, only one of them belongs to Z . The constant ρ > 0 gives the
complex width of analyticity of the function f (ϕ). Concerning the phases σk , they can
be chosen arbitrarily for the purpose of this paper.

To justify the form of the perturbation H1 chosen in (5) and (9), we stress that it makes
easier the explicit computation of the Melnikov potential, which is necessary in order to
show that it dominates the error term in (3), and therefore to establish the existence of
splitting. Moreover, the assumption that all coefficients fk in the Fourier expansion (9)
with respect to ϕ are nonzero and have an exponential decay, is usual in the literature (see
for instance [FSV18a,FSV18b]), and ensures that the study of the dominant harmonics
of theMelnikov potential can be carried out directly from the arithmetic properties of the
frequency vector ω. Indeed, such dominant harmonics correspond to the integer vectors
k providing an approximate equality in (7), i.e. giving the “smallest” divisors (relatively
to the size of |k|). We call primary resonances of ω to such vectors k, and secondary
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resonances to the rest of quasi-resonances (see Sect. 2 for details). In this way, the choice
of the coefficients fk in (9) allows us to emphasize the dependence of the splitting on
the arithmetic properties of ω.

It is worth remarking that, once we know the primary resonances for the given fre-
quency vector ω, we do not need all the coefficients fk to be different from zero in (9),
but only the ones corresponding to primary resonances. On the other hand, since our
method is completely constructive, other choices of concrete harmonics fk could also be
considered (like fk = |k|m e−ρ|k|), simply at the cost of more cumbersome computations
in order to determine the dominant harmonics of the Melnikov potential.

We also remind that the Hamiltonian defined in (4–9) is paradigmatic, since it is a
generalization of the famous Arnold’s example (introduced in [Arn64] to illustrate the
transition chain mechanism in Arnold diffusion). It provides a model for the behavior
of a nearly-integrable Hamiltonian system near a single resonance (see [DG01] for a
motivation), and has often been considered in the literature (see for instance [GGM99,
PT00,LMS03,DGS04]).

Let us describe the invariant tori and whiskers, as well as the splitting and Melnikov
functions. First, it is clear that the unperturbed system given by H0 (that corresponds to
μ = 0) is separable, and consists of the pendulum given by P(x, y) = y2/2+cos x −1,
and 3 rotors with fast frequencies: ϕ̇ = ωε + �I , İ = 0. The pendulum has a
hyperbolic equilibrium at the origin, with separatrices that correspond to the curves given
by P(x, y) = 0.We parameterize the upper separatrix of the pendulum as (x0(s), y0(s)),
s ∈ R, where

x0(s) = 4 arctan es, y0(s) = 2

cosh s
. (11)

Then, the lower separatrix has the parametrization (x0(−s),−y0(−s)). For the rotors
system (ϕ, I ), the solutions are I = I0, ϕ = ϕ0 + t (ωε + �I0). Consequently, the
Hamiltonian H0 has a 3-parameter family of 3-dimensionalwhiskered tori: in coordinates
(x, y, ϕ, I ), each torus can be parameterized as

TI0 : (0, 0, θ, I0), θ ∈ T3,

and the inner dynamics on each torus is θ̇ = ωε + �I0. Each invariant torus has a ho-
moclinic whisker, i.e. coincident 4-dimensional stable and unstable invariant manifolds,
which can be parameterized as

WI0 : (x0(s), y0(s), θ, I0), s ∈ R, θ ∈ T3, (12)

with the inner dynamics given by ṡ = 1, θ̇ = ωε + �I0.
In fact, the collection of the whiskered tori for all values of I0 is a 6-dimensional nor-

mally hyperbolic invariant manifold, parameterized by (θ, I ) ∈ T3×R3. This manifold
has a 7-dimensional homoclinic manifold, which can be parameterized by (s, θ, I ), with
inner dynamics ṡ = 1, θ̇ = ωε + �I , İ = 0 (see for instance [DLS06]).

Among the family of whiskered tori and homoclinic whiskers, we are going to focus
our attention on the torus T0, whose frequency vector is ωε as in (1), and its associated
homoclinic whisker W0.

When adding the perturbation μH1, for μ �= 0 small enough the hyperbolic KAM
theorem can be applied thanks to the Diophantine condition (7) and to the isoenergetic
nondegeneracy (8). Forμ small enough, the whiskered torus persists with some shift and

Author's personal copy



Exponentially Small Splitting of Separatrices

deformation, as a perturbed torus T = T (μ), as well as its local whiskersWloc =W(μ)
loc

(precise statements can be found, for instance, in [Nie00,DGS04]).
The local whiskers can be extended along the flow, but in general for μ �= 0 the

(global) whiskers do not coincide anymore, and one expects the existence of splitting
between the (4-dimensional) stable and unstable whiskers, denoted Ws = Ws,(μ) and
Wu = Wu,(μ) respectively. Using flow-box coordinates (see [DGS04], where the n-
dimensional case is considered) in a neighbourhood containing a piece of both whiskers
(away from the invariant torus), one can introduce parameterizations of the perturbed
whiskers, with parameters (s, θ) inherited from the unperturbed whisker (12), and the
inner dynamics

ṡ = 1, θ̇ = ωε.

Then, the distance between the stable whisker Ws and the unstable whisker Wu can
be measured by comparing such parameterizations along the complementary directions.
The number of such directions is 4 but, due to the energy conservation, it is enough to
consider 3 directions, say the ones related to the action coordinates I .

In order to measure correctly the splitting between the invariant manifolds Ws and
Wu, their parameterizations should be chosen in a coordinated way. For example, this
can be done with the help of a near-identity exact symplectic map as in [DG00, Sect. 5.1]
(following an idea introduced in [Eli94]). This map takes a piece ofWs intoWu, which
allows one to relate the parameterizations of both whiskers.With an additional change of
parameters, the unstable whiskerWu appears as a graph over the stable whiskerWs and,
by the properties of the whiskers as Lagrangian manifolds, the conjugate coordinates
(energy and actions) becomeagradient of a scalar function. In the case of fast frequencies,
the distance is shown to be exponentially small with respect to ε in [DGS04].

In this way, one can introduce a (vector) splitting function, with values in R3, as
the difference of the parameterizations J s,u(s, θ) of (the action components of) the
perturbed whiskers Ws and Wu. Initially this function depends on (s, θ),

˜M(s, θ) := J u(s, θ)− J s(s, θ), |s| ≤ κ, θ ∈ T3, (13)

with κ providing an interval where both parameterizations can be defined and hence
compared. Thanks to the use of flow-box coordinates, the function ˜M turns out to be
ωε-quasiperiodic (see [DGS04]):

˜M(s, θ) = ˜M(0, θ − ωεs). (14)

On the other hand, the funcion ˜M can be extended to a suitable complex strip in the
variables (s, θ). This fact and the quasiperiodicity play a key role in order to obtain
exponentially small estimates (see Sect. 4, where we apply the results of [DGS04]). In
fact, wemay consider the restriction to a fixed s providing a transverse section, say s = 0
(which lies close to x = π by (11)), and we define as in [DG00, Sect. 5.2] our splitting
function as

M(θ) := ˜M(0, θ), θ ∈ T3, (15)

and we refer to (13) as the “full” splitting funcion. We point out, as an alternative
approach, that a splitting function can also be defined by considering parametrizations
of the whiskers as solutions of Hamilton–Jacobi equation (see for instance [LMS03,
BFGS12]).
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Applying the Poincaré–Melnikov method, the first order approximation (3) of the
splitting function is given by the (vector)Melnikov function M(θ), which is the gradient
of the (scalar) Melnikov potential: M(θ) = ∇L(θ). The latter one can be defined
as an integral: we consider any homoclinic trajectory of the unperturbed homoclinic
whisker W0 in (12), starting on the section s = 0, and the trajectory on the torus T0 to
which it is asymptotic as t → ±∞, and we substract the values of the perturbation H1
on the two trajectories. This gives an absolutely convergent integral, which depends on
the initial phase θ ∈ T3 of the considered trajectories:

L(θ) := −
∫ ∞

−∞
[H1(x0(t), θ + tωε)− H1(0, θ + tωε)] dt

= −
∫ ∞

−∞
[h(x0(t))− h(0)] f (θ + tωε) dt, (16)

where we have taken into account the specific form (5) of the perturbation.
Our choices of the pendulum P(x, y) = y2/2 + cos x − 1 in (4) and the perturbation

in (5) and (9) lead to simple poles in the integrand in (16), which makes it possible
to use the method of residues in order to compute the coefficients Lk of the Fourier
expansion of the Melnikov potential L(θ), and hence the (vector) coefficients Mk of
the Melnikov function, which satisfy |Mk | = |k| |Lk |. Such coefficients turn out to be
exponentially small in ε (see their expression in Sect. 3.1). For each value of ε only
the dominant harmonic, corresponding to some index k = S1(ε), is relevant in order
to provide asymptotic estimates for the maximum value of the Melnikov function (of
course, a few dominant harmonicsmay have to be considered near some transition values
of ε, at which changes in the dominance take place). Due to the exponential decay of
the Fourier coefficients of f (ϕ) in (9), it is not hard to study such a dominance and its
dependence on ε.

In order to give asymptotic estimates for the maximal splitting distance, the estimates
obtained for the Melnikov function M(θ) have to be validated also for the splitting func-
tionM(θ). The difficulty in the application of thePoincaré–Melnikov approximation (3),
due to the exponential smallness in ε of the function M(θ) in our singular case μ = εr ,
can be solved by obtaining upper bounds (on a complex domain) for the error term
in (3), showing that, if r > r∗ with a suitable r∗, its Fourier coefficients are dominated
by the coefficients of M(θ) (see also [DGS04]).

1.3. Main result. For the Hamiltonian system (4–9) with the 2 parameters linked by
μ = εr , r > r∗ (with some suitable r∗), and a cubic frequency vector of complex type
ω as in (1), our main result provides an exponentially small asymptotic estimate for the
maximal distance of splitting, given in terms of the maximum size in modulus of the
splitting function M(θ), and this estimate is valid for all ε sufficiently small.

With our approach, the Poincaré–Melnikov method can be validated for an exponent
r > r∗ with r∗ = 3, although a lower value of r∗ can be given in some particular cases
(see Remark 2(c)). However, such values of r∗ are not optimal and could be improved
using other methods, like the parametrization of the whiskers as solutions of Hamilton–
Jacobi equation (see for instance [LMS03,BFGS12]). In this paper, the emphasis is put
on the extension of the methods and results from the 2-dimensional quadratic case to
the 3-dimensional cubic case, rather than on the improvement of the value of r∗.

Due to the form of f (ϕ) in (9), the Melnikov potential L(θ) is readily presented in
its Fourier series (see Sect. 3.1), with coefficients Lk = Lk(ε) which are exponentially
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small in ε. We use this expansion of L(θ) in order to detect its dominant harmonic
k = S1(ε) for every given ε. Such a dominance is also valid for the Melnikov function
M(θ), since the size of their Fourier coefficients Mk (vector) and Lk (scalar) is directly
related: |Mk | = |k| |Lk |, k ∈ Z (recall the definition of Z in (10)).

As shown in Sect. 4, in order to obtain an asymptotic estimate for the maximum
value of M(θ), i.e. for the distance of splitting, for most values of ε it is enough to
consider the (unique) first dominant harmonic S1(ε) of the Melnikov function M(θ),
whose size behaves like exp{−h1(ε)/ε1/6}, being described by a (positive) function
h1(ε) that is carefully studied in this paper. To ensure that the dominant harmonic of
M(θ) corresponds to the dominant harmonic of the splitting functionM(θ), one has to
carry out an accurate control of the error term in (3). In this way, using estimates for
the size of the dominant harmonic, as well as for all the remaining harmonics, one can
prove that the dominant harmonic is large enough and provides an approximation to the
maximum size of the whole splitting function (see also [DGG14a,DGG14b,DGG16]).

However, one has to consider at least two harmonics for ε near to some “transition
values”, at which a change in the dominant harmonic occurs and, consequently, two
(or more) harmonics having similar sizes can be considered as the dominant ones. In
this case, the size of the splitting function can also be determined from the dominant
harmonics, although such transition values turn out to be corners of the function h1(ε)
(see the theorem below, and Fig. 1).

The determination of the dominant harmonics, and hence the dependence on ε of the
size of the splitting and the function h1(ε), are closely related to the arithmetic proper-
ties of the frequency vector ω in (1), since the integer vectors k ∈ Z associated to the
dominant harmonics can be found, for any ε, among the main quasi-resonances of ω,
i.e. the vectors k giving the “smallest” divisors |〈k, ω〉| (relatively to the size of |k|). In
Sect. 2, we develop a methodology for a complete study of the resonant properties of
cubic frequency vectors (of complex type), which is one of the main goals of this paper.
This methodology relies on the classification of the integer vectors k into “resonant
sequences” (see Sect. 2.1 for definitions). Among them, the sequence of primary res-
onances corresponds to the vectors k which fit best the Diophantine condition (7), and
the vectors k belonging to the remaining sequences are called secondary resonances. In
this way, we can also determine the (positive) asymptotic Diophantine constant,

γ− := lim inf|k|→∞
|〈k, ω〉| · |k|2 . (17)

This approach, already announced in [DGG14a] for 3-dimensional cubic frequency
vectors, generalizes the one introduced in [DG03] for 2-dimensional quadratic frequency
vectors.

Formost values of ε, the dominant harmonic is given by an integer vector k associated
to a primary resonance, but for some intervals of ε the secondary resonances may have
to be taken into account giving rise to a more involved function h1(ε). Nevertheless, for
some cubic frequency vectorsω in (1) such as the cubic golden vector, the function h1(ε)
can be defined using only the primary resonances (see Sects. 2.3 and 3.4).

In order to generate the resonant sequences,we use a result byKoch [Koc99], ensuring
the existence of a unimodular (3×3)-matrix T (i.e. with integer entries and determinant
±1), having ω as an eigenvector with the associated eigenvalue

λ > 1. (18)

Altough there exist an infinity ofmatrices T fittingKoch’s result, we establish in Sect. 2.1
a canonical choice for it (see Proposition 4), and we write it as T = T (ω).
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Fig. 1. Graph of the function h1(ε) = F1(ζ ) in the exponent of (20), for the cubic golden vector (see Sect. 2.3),
in the logarithmic variable ζ ∼ ln(1/ε) (see (81) for a precise definition), as the minimum of the functions
f n(ζ ) (see Sects. 3.2 and 3.4)

The eigenvalue λ = λ(ω) is also a cubic irrational number and belongs to Q(�).
Hence it also has complex conjugates, which can be written in the form

λ2, λ2 = 1√
λ
e±iπ ·φ, 0 < φ < 1, (19)

and φ = φ(ω) is an irrational number (see Sect. 2.1).
For a concrete cubic frequency vector ω, it is not too hard to find the Koch’s matrix

T = T (ω) (see Sect. 2.1 for a procedure, and Sect. 2.3 for its application to the concrete
case of the cubic golden vector). We point out that, for the quadratic 2-dimensional
case ω = (1,�), a systematic algorithm providing an analogous (2× 2)-matrix T was
developed in [DGG16], from the continued fraction of the frequency ratio � (which is
eventually periodic for quadratic numbers). An extension of this algorithm to the cubic
case would require a further study (possibly using some of the existingmultidimensional
continued fraction theories), and is not carried out here.

Assuming that the matrix T is known, the key point is that the iteration of the matrix
U = (T−1)� from an initial (“primitive”) vector allows us to generate any resonant
sequence (see the definition (45)). In this way, we can construct the resonant sequences
allowing us to detect the dominant harmonics of the Melnikov potential and, conse-
quently, asymptotic estimates for the maximal splitting distance.

Next, we establish the main result of this work, which generalizes to the complex
cubic case the results obtained in [DG04,DGG16] for the quadratic case. The result
given below provides exponentially small asymptotic estimates for the maximal dis-
tance of splitting, as ε → 0, given by the maximum of |M(θ)|, θ ∈ T3. In such
asymptotic estimates, the dependence on ε is mainly described by the exponent 1/6,
and by the function h1(ε). This is a positive function, quasiperiodic with respect to ln ε

and piecewise-smooth and, consequently, it has a finite number of corners (i.e. jump
discontinuities of the derivative) in any given interval. As we can see from the statement
of the theorem, the numbers λ and φ introduced in (18–19) play an essential role in the
quasiperiodicity of the function h1(ε), since they provide directly the two frequencies
3 ln λ and 3 ln λ · φ, and the fact that φ is irrational ensures that the function h1(ε) is
not periodic, which makes a difference with respect to the quadratic case considered in
[DGG16].

For any given cubic vector ω (of complex type), the function h1(ε) can be explicitly
constructed (see Sect. 3.2). However, its (piecewise) expression can be very complicated.
Its graph is shown in Fig. 1 (where a logarithmic scale for ε is used), for the concrete
case of the cubic golden frequency vector. The oscillatory behavior of the function h1(ε)
depends strongly on the arithmetic properties of ω.
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For positive quantities, we use the notation f ∼ g if we can bound c1g ≤ f ≤ c2g
with constants c1, c2 > 0 not depending on ε, μ.

Theorem 1. (main result) Assume the conditions described for the Hamiltonian (4–9),
with a cubic frequency vector ω = (1,�,˜�) of complex type as in (1), that ε is small
enough and that μ = εr , r > 3. Then, for the splitting function M(θ) we have:

max
θ∈T3
|M(θ)| ∼ μ

ε1/3
exp

{

−C0h1(ε)

ε1/6

}

. (20)

The function h1(ε), defined in (87), is positive, piecewise-smooth, piecewise-convex and
quasiperiodic in ln ε, with two frequencies 3 ln λ and 3 ln λ · φ, where λ = λ(ω) and
φ = φ(ω) are the numbers introduced in (18–19). It satisfies for ε > 0 lower and upper
bounds J−0 ≤ h1(ε) ≤ J+1 , where the values J

−
0 = J−0 (ω) and J+1 = J+1 (ω) are defined

in (99). On the other hand, C0 = C0(ω, ρ) is a positive constant defined in (74).

Remarks 2. (a) As a consequence of this theorem, replacing h1(ε) by its supremum value
J ∗1 (≤ J+1 , see also Sect. 3.3), we get the following sharp lower bound for themaximal
splitting distance:

max
θ∈T3
|M(θ)| ≥ cμ

ε1/3
exp

{

−C0 J ∗1
ε1/6

}

,

where c is a constant. This may be enough, if our aim is only to prove the existence
of splitting of separatrices, without giving an accurate description for it.

(b) Our approach can also be applied to show the existence of transverse homoclinic
orbits, associated to simple zeros θ∗ of the splitting functionM(θ) (or, equivalently,
nondegenerate critical points of the splitting potential), providing an asymptotic es-
timate for the transversality of the homoclinic orbits, measured by the minimum
eigenvalue (in modulus) of the matrix DM(θ∗) at each zero of M(θ). Such an
asymptotic estimate is exponentially small in ε as in (20), but the function h1(ε) has
to be replaced by a greater function h3(ε), also piecewise-smooth and quasiperiodic
in ln ε. In order to define h3(ε), one has to consider the three most dominant harmon-
ics whose indices S1(ε), S2(ε), S3(ε) ∈ Z are linearly independent (this is necessary
in order to prove that the zeros θ∗ are simple). This result on transversality would be
valid for “almost all” ε sufficiently small, since one has to exclude a small neighbor-
hood of some values where the third and the fourth dominant harmonics have similar
sizes, and homoclinic bifurcations could take place. See [DGG16] for the analogous
situation in the quadratic case, where only the two most dominant harmonics are
necessary.

(c) The results of Theorem 1 can be improved under some particular situations. For
instance, if the function h(x) in (9) is replaced by h(x) = cos x−1, then the estimates
are valid for μ = εr with r > 2 (instead of r > 3). The details of this improvement
are not given here, since they work exactly as in [DG04].

Organi zat i on of the paper. We start in Sect. 2 with studying the arithmetic prop-
erties of cubic frequency vectors ω = (1,�,˜�) (of complex type), and constructing
the iteration matrix T . Next, in Sect. 3 we find an asymptotic estimate for the dominant
harmonic of the splitting potential, which allows us to define the function h1(ε) and
study their general properties. In order to illustrate our methods, concrete results for
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the cubic golden vector are obtained in Sects. 2.3 (arithmetic properties) and 3.4 (the
function h1(ε)). Finally, in Sect. 4 we provide rigorous bounds of the remaining har-
monics allowing us to obtain asymptotic estimates for the maximal splitting distance, as
established in Theorem 1.

2. Arithmetic Properties of Cubic Frequencies

2.1. Iteration matrix for a cubic frequency vector. We consider a cubic frequency vector
ω ∈ R3, i.e. the frequency ratios ω2/ω1 and ω3/ω1 generate a cubic field (an algebraic
number field of degree 3 over Q, i.e. its dimension as a vector space over Q is 3). In
order to simplify our exposition, we assume that ω1 = 1, and hence the vector has the
form

ω = (1,�,˜�), (21)

where � is a cubic irrational number, i.e. its minimum polynomial (the monic polyno-
mial of minimal degree having � as a root) has degree 3, and ˜� belongs to the field
Q(�):

�3 = r0 + r1� + r2�
2, (22)

˜� = a0 + a1� + a2�
2, with a2 �= 0, (23)

where the coefficients r j , a j are rational. The number ˜� is also cubic irrational (in
fact, any number belonging to Q(�) is either rational or cubic irrational). We restrict
ourselves to the complex case (also called the non-totally real case): the two conjugates
of �, as a root of the polynomial Eq. (22), are complex. This condition can be expressed
in terms of having negative discriminant,

� = 4r 3
1 + r 2

1 r
2
2 − 27r 2

0 − 18r0r1r2 − 4r0r
3
2 < 0.

We denote the conjugates of � as

�2 := σ(�) = σ2 + iσ3, �2 = σ̄ (�) = σ2 − iσ3 (24)

and, from the standard equalities

r2 = � + �2 + �2 = � + 2σ2, r1 = −(��2 + ��2 + �2�2) = −(2�σ2 + σ 2
2 + σ 2

3 )

we see that

σ2 = 1

2
(r2 −�), σ3 = s

2

√

−(4r1 + r 2
2 )− 2r2� + 3�2, (25)

with a concrete sign s = ±1 for σ3, that will be chosen later for convenience (see (37)).
It is clear from (23) that our cubic frequency vector ω can be related to the more

particular case

ω(0) = (1,�,�2) (26)

through a linear change: ω = Aω(0), with the following matrix belonging to the general
linear group GL(3,Q),

A :=
⎛

⎝

1 0 0
0 1 0
a0 a1 a2

⎞

⎠ (27)

(for instance, the cubic golden frequencyvector considered inSect. 2.3 has the form (26)).
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It is well-known from algebraic number theory (see for instance [ST87, Ch. II] or
[Lan02, Ch. V–VI] as general references) that there exist unique field isomorphisms
σ : Q(�) −→ Q(�2) and σ̄ : Q(�) −→ Q(�2) such that σ(�) = �2 and σ̄ (�) = �2.
It is clear that σ and σ̄ are related by the ordinary complex conjugacy. Then, the numbers
σ(˜�) and σ̄ (˜�) turn to be the conjugates of ˜�, and they are also complex (indeed, if
they were real, they would coincide and ˜� would not be a cubic irrational).

Any cubic frequency vector ω ∈ R3 satisfies a Diophantine condition, with the
minimal exponent (see for instance [Cas57, Sect. V.3] or [Sch80, Sect. II.4]):

|〈k, ω〉| ≥ γ

|k|2 , ∀k ∈ Z3\ {0} . (28)

With this in mind, we define the “numerators”

γk := |〈k, ω〉| · |k|2 , k ∈ Z3\ {0} , (29)

where we use the Euclidean norm: |·| = |·|2 (this allows us to use the properties of the
scalar product). The numerators have γ > 0 as a lower bound. Our goal is to provide
a classification of the integer vectors k, according to the size of γk , in order to find the
primary resonances (i.e. the integer vectors k for which γk is smallest, and hence best
fitting the Diophantine condition (28)), and study their separation with respect to the
remaining vectors k (i.e. the secondary resonances).

The key point will be to use the following result by Koch [Koc99]: for a vector
ω ∈ R� whose frequency ratios generate an algebraic field of degree �, there exists a
unimodular (�× �)-matrix T (a square matrix with integer entries and determinant±1)
having ω as an eigenvector with associated eigenvalue λ of modulus > 1, and such that
the other � − 1 eigenvalues are all simple and of modulus < 1. This result is valid for
any dimension �, and is usually applied in the context of renormalization theory (see
for instance [Koc99,Lop02]), since the iteration of the matrix T provides successive
rational approximations to the direction of the vector ω.

For any given cubic frequency vector ω as in (21), we say that a (3 × 3)-matrix T
is a “Koch’s matrix for ω ” if it satisfies the requirements of Koch’s result [Koc99]. It
is not hard to find a Koch’s matrix for any concrete cubic vector ω (see below for a
general procedure, and Sect. 2.3 for its application to the concrete case of the cubic
golden vector). It is clear that a Koch’s matrix T is not unique, since any power ±T n is
also a Koch’s matrix.

We can assume that the determinant of T is positive, det T = 1, i.e. T belonging to the
special linear group SL(3,Z) (otherwise, we can replace T by−T ). For the eigenvalue
λ associated to the eigenvector ω, it is clear that it is real and can be writen as

λ = 〈

T(1), ω
〉 = T11 + T12� + T13˜� ∈ Q(�) (30)

where we denote T(1) := (T11, T12, T13) (the first row of T , considered here as a column
vector). We also see that λ is cubic irrational (otherwise, it would be rational and the
frequency ratios of ω would also be rational). The other two eigenvalues of T , which are
the conjugates of λ, are complex (see the argument given above for ˜�), which implies
that λ is positive: λ > 1. We write the conjugates of λ in terms of real and imaginary
parts:

λ2 := σ(λ) = μ2 + iμ3, λ2 = σ̄ (λ) = μ2 − iμ3. (31)

Moreover, we consider a basis of eigenvectors of T , also writing the two complex ones in
terms of real and imaginary parts (thus, we do not work directly with complex vectors):
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ω, v2 + iv3 = σ(ω), v2 − iv3 = σ̄ (ω), (32)

with associated eigenvalues λ, λ2, λ2, respectively. We understand that, for vectors, the
conjugacies σ , σ̄ can be applied componentwisely, and hence the conjugate vectors
above can be obtained just by replacing � by �2 or �2 in (21). In this way, the vectors
v2 and v3 do not depend on the specific choice of a Koch’s matrix T . Let C denote the
(3× 3)-matrix having ω, v2, v3 as columns, and we consider its condition number

κ = κ(ω) := |C | ·
∣

∣

∣C−1
∣

∣

∣ , (33)

also not depending on the choice of T (we use the matrix norm subordinate to the
Euclidean norm for vectors). Next, we prove that the eigenvalue λ > 1 cannot be
arbitrarily close to 1.

Lemma 3. For any Koch’s matrix T ∈ SL(3,Z) for ω, the real eigenvalue λ in (30)
satifies the lower bound λ > λ0, with λ0 = λ0(ω) > 1 defined as the unique real
number satisfying λ 3

0 − λ 2
0 − γ /4κ2 = 0, where γ is the constant in the Diophantine

condition (7), and κ is the condition number (33).

Proof. From the definitions of v2 and v3, it is clear that T v2 = μ2v2 − μ3v3 and

T v3 = μ3v2 + μ2v3, and hence T = CDC−1, where we define D =
⎛

⎝

λ 0 0
0 μ2 μ3
0 −μ3 μ2

⎞

⎠.

Since D�D = diag(λ2, μ 2
2 + μ 2

3 , μ 2
2 + μ 2

3 ), and using the inequalities
√

μ 2
2 + μ 2

3 =
|λ2| < 1 < λ, one readily sees that |D| = λ and we deduce that λ ≤ |T | ≤ κλ. Now, we
use (30), and apply the Diophantine condition (7) to the vector k = T(1) − (1, 0, 0) =
(T11 − 1, T12, T13) (it is clear that k �= 0, otherwise T has an integer eigenvalue):

λ− 1 = 〈k, ω〉 ≥ γ

|k|2 ≥
γ

4 |T |2 ≥
γ

4κ2λ2
,

where we used that |k| ≤ ∣

∣T(1)
∣

∣ + |(1, 0, 0)| ≤ |T | + 1 ≤ 2 |T |. Finally, a simple study
of the function g(x) = x3 − x2 − γ /4κ2 shows that λ > λ0. ��

Using this lemma, we next show the “uniqueness” of the matrix T satisfying Koch’s
result. More precisely, we can choose T = T (ω) ∈ SL(3,Z) whose real eigenvalue
λ = λ(ω) > 1 is minimal or, equivalently, the norm |T | is minimal. We call this matrix
T “the principal Koch’s matrix for ω ”.

Proposition 4. There exists a unique matrix T = T (ω) ∈ SL(3,Z) such that all Koch’s
matrices for ω have the form ±T n, n ≥ 1.

Proof. As we said before, we can restrict ourselves to Koch’s matrices of positive deter-
minant. Assume that T and S are two Koch’s matrices, with real eigenvalues satisfying
1 < λT ≤ λS . It is clear that ST−1 has ω as an eigenvector with eigenvalue λS/λT ≥ 1,
and hence > 1 (it cannot be equal to 1). This says that ST−1 is another Koch’s matrix,
with λS/λT > λ0 by Lemma 3 (recall that λ0 = λ0(ω) > 1). Therefore, the real eigen-
values of the Koch’s matrices for ω are all different, and separated at least by a factor λ0
(filling in this way a discrete set). On the other hand, such eigenvalues satisfy the lower
bound given in Lemma 3. This implies that we can choose a Koch’s matrix T = T (ω)

with minimal eigenvalue λ = λ(ω) > 1. Then, the matrices T n (and the opposite ones
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−T n), n ≥ 1, are also clearly Koch’s matrices. It remains to show that they are the
only ones. Indeed, if there exists another Koch’s matrix S, its real eigenvalue satisfies
λn < λS < λn+1 for some n ≥ 1, and we deduce that ST−n is a Koch matrix whose
eigenvalue satisfies 1 < λSλ

−n < λ, which contradicts our choice of T . ��
Now, our aim is to describe a simple procedure allowing us to determine the principal

Koch’s matrix for a given cubic vector ω. The idea of our method is that any matrix T
with integer (or rational) entries having ω as an eigenvector is determined by its first
row T(1) = (T11, T12, T13). The matrices T obtained in this way belong to the general
linear group GL(3,Q) but, in general, do not belong to SL(3,Z). However, we can can
explore such matrices by giving successive values to the entries of T(1), until we find a
Koch’s matrix. First, in the next lemma we establish the (linear) dependence of T with
respect to its first row.

Lemma 5. For any vector T(1) = (T11, T12, T13) with rational entries, there exists a
unique matrix T with rational entries, having ω as an eigenvector, and T(1) as the first
row. This matrix can be written as

T = A
(

T11 Id + T12R + T13(a0 Id + a1R + a2R
2)
)

A−1, (34)

where we define

R :=
⎛

⎝

0 1 0
0 0 1
r0 r1 r2

⎞

⎠ (35)

(recall the coefficients r j , a j and the matrix A, introduced in (22–23) and (27)).

Proof. We begin by proving the result for the particular case of a frequency vector ω(0)

as in (26). It is straightforward to check that the matrix R has ω(0) as an eigenvector
with eigenvalue �. The matrix R2, which has (0, 0, 1) has the first row, also has the
same eigenvector ω(0) with eigenvalue �2. Then, it is clear that, for any given vector

T (0)
(1) =

(

T (0)
11 , T (0)

12 , T (0)
13

)

, the matrix

T (0) = T (0)
11 Id + T (0)

12 R + T (0)
13 R2 (36)

has T (0)
(1) as the first row, and ω(0) as an eigenvector with eigenvalue

λ =
〈

T (0)
(1) , ω(0)

〉

= T (0)
11 + T (0)

12 � + T (0)
13 �2.

To show the uniqueness of such a matrix, notice that its second and third rows T (0)
(2)

and T (0)
(3) can be determined by the first one using the equalities λ� =

〈

T (0)
(2) , ω(0)

〉

and

λ�2 =
〈

T (0)
(3) , ω(0)

〉

. which allow us to determine their entries as (rational) coefficients

in the basis 1, �, �2 of the fieldQ(�). This shows the result for the particular case of a
vector ω(0).

Now, we consider the general case of a frequency vector ω = Aω(0), with a matrix
A as in (27). If a matrix T has ω as an eigenvector and T(1) = (T11, T12, T13) as the first
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row, then it has the form T = A T (0)A−1, where T (0) has ω(0) as an eigenvector, with
the same eigenvalue

〈

T (0)
(1) , ω(0)

〉

= λ = 〈

T(1), ω
〉 =

〈

A�T(1), ω
(0)
〉

(recall that we consider the rows as column vectors). Using again that the entries of the
vectors can be determined as coefficients in the basis 1, �, �2, we deduce that

T (0)
(1) = A�T(1) = (T11 + a0T13, T12 + a1T13, a2T13).

Applying (36), we get the whole matrix T (0) and, performing the linear change given
by A, we get T as in (34). Its uniqueness is a direct consequence of the uniqueness of
T (0). ��

Now, in order to determine the principal Koch’s matrix for ω we can carry out the
following simple exploration. We consider the (integer) entries of the first row T(1) as
successive data, say with increasing norm

∣

∣T(1)
∣

∣, until the whole matrix T determined
from Lemma 5 belongs to SL(3,Z) (i.e. it has integer entries and determinant 1) and
has an eigenvalue λ > 1 in (30). By Koch’s result, we know that such a matrix exists
and will be reached after a finite exploration. It remains to check whether the matrix T ∗
obtained in this way is the principal Koch’s matrix for ω since, in principle, there could

exist another Koch’s matrix T with
∣

∣T(1)
∣

∣ ≥
∣

∣

∣T ∗(1)
∣

∣

∣ but |T | < |T ∗|. If this happens, such
a new matrix T would satisfy

∣

∣T(1)
∣

∣ < |T ∗|. Hence, after obtaining a first matrix T ∗, it
is enough to continue the exploration with increasing norms

∣

∣T(1)
∣

∣ up to the value |T ∗|
and, if a newKoch’s matrix T is obtained, check if its norm |T | is lower than |T ∗|, which
would imply that the matrix T has to replace T ∗ as the principal one.

Remark 6. In some particular cases, we can provide directly the matrix A R A−1 or
its inverse A R−1A−1 as a Koch matrix. This will happen if the coefficients r j and
a j introduced in (22–23) are all integer, and |r0| = |a2| = 1. Since det R = r0 and
det A = a2, both of the matrices given above are unimodular (with integer entries and
determinant ±1). Moreover, they have ω as eigenvector, with eigenvalue � or �−1,
respectively. Notice also that � and r0 have the same sign (indeed, this comes from the
fact that the other two eigenvalues �2, �2 of R are complex, and r0 = � · �2 · �2).
We deduce:

• if |�| > 1, the matrix T = r0A R A−1 is a Koch’s matrix, with the eigenvalue
λ = r0� > 1;
• if |�| < 1, the matrix T = r0A R−1A−1 = −A(r1Id + r2R − R2)A−1 is a Koch’s
matrix, with the eigenvalue λ = r0�−1 > 1.

However, the Koch’s matrix obtained in this way might not be the principal one, and
hence the exploration described above, using the matrices T given by Lemma 5, would
be necessary also in this case.

See also in Sect. 2.3 the concrete application of the procedure described above (in-
cluding Remark 6) to the case of the cubic golden vector. We also recall here that a
more systematic algorithm was developed in [DGG16] for the case of a quadratic 2-
dimensional vector ω = (1,�), providing a (2 × 2)-matrix T , from the (eventually
periodic) continued fraction of the frequency ratio �.
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Thus, in view of Proposition 4, we will always assume that T = T (ω) is the principal
Koch’smatrix. Since det T = 1, it is clear that themodulus the two conjugate eigenvalues
is |λ2| =

∣

∣λ2
∣

∣ = λ−1/2. We now define the following important number,

φ = φ(ω) := 1

π
arg(λ2), i.e. λ2, λ2 = 1√

λ
e±iπ ·φ, (37)

and we can assume that it is positive: 0 < φ < 1. Indeed, once the matrix T (ω) is chosen
as the principal one, the sign of φ (or equivalently the sign on μ3 in (31)) is determined
by the suitable choice of the sign s for σ3 in (25).

The next lemma has a crucial role in showing that the function h1(ε), appearing in
the exponent of the maximal splitting distance in Theorem 1, is quasiperiodic, and not
periodic, with respect to ln ε. This comes from the fact that the ratio between the two
frequencies of h1(ε) is given by φ, as we show in Sect. 3.2.

Lemma 7. The number φ = φ(ω) is irrational.

Proof. Let us assume that φ is rational, say φ = m/n as an irreducible fraction. Then,
the matrix T n also satisfies Koch’s result, but it has λn as a simple eigenvalue, and
(−1)mλ−n/2 as a double real eigenvalue, which contradicts two facts: the eigenvalues
of T n are all simple, and two of them are complex. ��

2.2. Quasi-resonances of a cubic frequency vector. Thematrix T given byKoch’s result
[Koc99] provides approximations to the direction of ω = (1,�,˜�). However, we are
not interested in finding approximations to ω but, on the contrary, approximations to the
quasi-resonances ofω, which lie close to the “resonant plane” 〈ω〉⊥ (the orthogonal plane
to ω). To be more precise, we say that an integer vector k ∈ Z3\ {0} is a quasi-resonance
of ω if

|〈k, ω〉| < 1

2
, (38)

and we denote by A the set of quasi-resonances.
For any given number x ∈ R, we denote rint(x) and ‖x‖ the closest integer to x

and the distance from x to such closest integer, respectively. It is clear that ‖x‖ =
|x − rint(x)| = min

p∈Z
|x − p|. Since the first component of ω is equal to 1, for any quasi-

resonance k = (k1, k2, k3) ∈ A we have rint(k2� + k3˜�) = −k1. In other words, for
any q ∈ Z2\ {0} we have a quasi-resonance

k0(q) := (−p, q) = (−p, q1, q2), with p = p0(q) := rint(q1� + q2˜�), (39)

whose small divisor is

rq :=
〈

k0(q), ω
〉

= −p + q1� + q2˜� =
∥

∥q1� + q2˜�
∥

∥ . (40)

We also say that k0(q) is an essential quasi-resonance if it is not a multiple of another
integer vector, and we denote by A0 the set of essential quasi-resonances.

Now, we define the matrix

U := (T−1)�, (41)
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which satisfies the following simple but important equality:

〈Uk, ω〉 =
〈

k,U�ω
〉

= 1

λ
〈k, ω〉 (42)

where λ = λ(ω) is the eigenvalue of T with λ > 1. This says that successive iterations
Unk from a given integer vector k get closer and closer to the resonant plane 〈ω〉⊥.

We deduce from (42) that if k ∈ A, then also Uk ∈ A. We say that the vector k
is primitive if k ∈ A but U−1k /∈ A. It is clear that k is primitive if and only if the
following fundamental property is fulfilled:

1

2λ
< |〈k, ω〉| < 1

2
. (43)

Writing k = k0(q) = (−p, q), we denote byP the set of vectors q = (q1, q2) ∈ Z2\ {0}
associated to primitive vectors:

P := {q ∈ Z2 : (q1 ≥ 1 or (q1 = 0, q2 ≥ 1)) and k0(q) is primitive}, (44)

where the choice of q1 being positive allows us to avoid repetitions, since it means that
k0(q) ∈ Z (recall the definition (10)). We also denote by P0 the set of vectors q ∈ P
such that k0(q) is essential.

Now we define, for each q ∈ P , a resonant sequence of integer vectors:

s(q, n) := Unk0(q), n ≥ 0. (45)

By construction, the set of such resonant sequences covers the whole set of quasi-
resonances A, providing a classification for them. As done in [DG03,DGG16] for the
case of quadratic frequencies, we are going to establish the properties of the resonant
sequences (45) for cubic frequencies (see Proposition 11 below).

Remark 8. A resonant sequence s(q, n) generated by an essential primitive k0(q) cannot
be a multiple of another resonant sequence. Indeed, in this case we would have k0(q) =
c s(q̃, n0) with |c| > 1 and n0 ≥ 0, and hence k0(q) would not be essential.

Analogously to the basis of eigenvectors ω, v2 ± iv3 of T introduced in (32), we
also consider a basis of eigenvectors ofU writing the complex ones in terms of real and
imaginary parts:

u1, u2 + iu3 = σ(u1), u2 − iu3 = σ̄ (u1), (46)

with eigenvalues λ−1, λ−12 , λ
−1
2 , respectively. One readily sees that 〈u2, ω〉 = 〈u3, ω〉 =

0, i.e. u2 and u3 span the resonant plane 〈ω〉⊥. Other useful equalities are: 〈u1, v2〉 =
〈u1, v3〉 = 0, 〈u2, v2〉 = − 〈u3, v3〉, 〈u2, v3〉 = 〈u3, v2〉.We define Z1, Z2 and θ through
the formulas

1

2
(|u2|2 + |u3|2) = Z1,

1

2
(|u2|2 − |u3|2) = Z2 cos θ, 〈u2, u3〉 = Z2 sin θ, (47)

and the following important number,

δ = δ(ω) := Z2

Z1
. (48)
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It is clear, from the definition of Z1 and Z2, that 0 ≤ δ ≤ 1. The following result shows
that δ cannot achieve the extreme values 0 and 1. In particular, the fact that δ > 0 has
a crucial role (together with the irrationality of φ shown in Lemma 7) in showing that
the quasiperiodic function h1(ε), appearing in the exponent of the maximal splitting
distance in Theorem 1, is not periodic with respect to ln ε.

Lemma 9. The number δ = δ(ω) satisfies 0 < δ < 1.

Proof. We first show that δ < 1. Indeed, if δ = 1 then Z1 = Z2, which would imply that
|〈u2, u3〉| = |u2| · |u3|, but this is not possible since u2 and u3 are linearly independent.

Now, we are going to see that δ > 0. If we have δ = 0, then Z2 = 0 and, from (47),
the expressions |u2|2 − |u3|2 and 〈u2, u3〉 would vanish simultaneously. To show that
this is not possible, we are going to see that they can be written as follows,

|u2|2 − |u3|2 = c0 + c1� + c2�
2, 〈u2, u3〉 = (d0 + d1� + d2�

2) σ3 (49)

(see (24) for σ3) and that the coefficients c j , d j cannot be all zero.
Let us write the coefficients c j , d j as rational expressions in the coefficients r j ,

a j introduced in (22–23). Recall that, in (46), we introduced u2 ± iu3 as complex
eigenvectors of the matrixU , conjugates of the real eigenvector u1. It is clear from (41)
that the eigenvectors of U are the same as for T�. Since the matrix T can be written as
in (34) (with suitable coefficients T1 j ), it is easy to relate the eigenvectors of T� with
the ones of R�, through the linear change defined by the matrix B := (A−1)�, where
A is the matrix introduced in (27). Namely, we have

u1 = B u(0)
1 , u2 ± iu3 = B (u(0)

2 ± iu(0)
3 ),

where u(0)
1 , u(0)

2 ±iu(0)
3 = σ(u(0)

1 ), σ̄ (u(0)
1 ) are the eigenvectors of R�. Using (35) and the

cubic Eq. (22), it is not hard to obtain the real eigenvector u(0)
1 (with eigenvalue �) and,

subsequently, the complex eigenvectors u(0)
2 ± iu(0)

3 as its conjugates (with eigenvalues
σ2 ± iσ3, recall (24)). We get

u(0)
1 = (r0,−r2� + �2,�),

u(0)
2 = (r0,−r2σ2 + σ 2

2 − σ 2
3 , σ2), u(0)

3 = σ3(0,−r2 + 2σ2, 1). (50)

Using such ingredients, together with (25), we are able to obtain algebraic expressions
for (49) in the basis 1, �, �2 of the field Q(�). After some tedious computations, we
get the following coefficients:

c0 = r 2
0 −

(

a0
a2

+
1

2

)

r0r2 − 2a1
a2

r0 + r 2
1 −

a1
a2

r1r2

+
a 2
0 + a 2

1 + 1

a 2
2

(

r1 +
r 2
2

2

)

,

c1 =
(

a0
a2
− 1

2

)

r0 +

(

r2
2

+
a1
a2

)

r1, c2 = −r1
2
− a 2

0 + a 2
1 + 1

2a 2
2

,

d0 = −(c1 + r2c2), d1 = c2, d2 = 0.
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Assuming c j = d j = 0, j = 0, 1, 2, we reach a contradiction. Indeed, from c2 = 0 we
get r1 = −(a 2

0 + a 2
1 + 1)/a 2

2 and, replacing into the remaining coefficients, we obtain

c1 = −d0 =
(

a0
a2
− 1

2

)

r0 − a 2
0 + a 2

1 + 1

a 2
2

(

r2
2

+
a1
a2

)

,

c0 + c1r2 = r 2
0 −

(

r2 +
2a1
a2

)

r0.

Since r0 �= 0 in (22), from the second equality we get r0 = r2 + 2a1/a2 and the first
equality becomes

c1 = −
(

(

a0
a2
− 1

)2

+
a 2
1 + 1

a 2
2

)

r0
2

,

which contradicts our assumption that c1 = 0 and, consequently, we have δ > 0. ��
Remark 10. The previous arguments show, for the numbers defined in (47), that we have
Z1, Z 2

2 ∈ Q(ω). Indeed, using the rational expressions obtained for the coefficients c j ,
d j (together with the fact that σ 2

3 ∈ Q(ω)), we can determine from (49) the coefficients
of Z 2

2 in the basis 1, �, �2. In an analogous way, we can determine the coefficients of
Z1 in the same basis, and we deduce from (48) that δ2 ∈ Q(�). Then, it is also possible
obtain the coefficients of δ2 in the basis 1, �, �2 by carrying out a quotient in the field
Q(�), though the general expression is very complicated. See (69) for the particular
case of the cubic golden frequency vector.

For any q ∈ P , we define

yq :=
〈

k0(q), v2

〉

, zq :=
〈

k0(q), v3

〉

, (51)

and Eq , ψq , Kq and γ ∗q through the formulas

〈v2, u2〉 yq + 〈v2, u3〉 zq
〈v2, u2〉2 + 〈v2, u3〉2

= Eq cosψq ,
〈v2, u3〉 yq − 〈v2, u2〉 zq
〈v2, u2〉2 + 〈v2, u3〉2

= Eq sinψq ,

(52)

Kq := E 2
q Z1, γ ∗q :=

∣

∣rq
∣

∣ Kq . (53)

We see in the next proposition that any given resonant sequence s(q, n) defined in (45)
exhibits an “oscillatory limit behavior” as n → ∞: the sizes of the vectors s(q, n)

oscillate around a sequence having geometric growth of rate λ1/2, and the numerators
γs(q,n) oscillate around the value γ ∗q , which can be considered as the “mean Diophantine
constant” for the resonant sequence s(q, n). This proposition extends the results given
in [DG03,DGG16] for the quadratic case, where a (non-oscillatory) limit behavior is
also established for resonant sequences. In our case of a non-totally real complex vector
ω, the relative amplitude and the frequency of the oscillations are directly related to the
numbers φ = φ(ω) and δ = δ(ω), introduced in (37) and (48) respectively. As we see in
Sect. 3, the facts that φ is irrational and δ > 0, shown by Lemmas 7 and 9 respectively,
allow us to show that the function h1(ε) associated to the maximal splitting distance in
Theorem 1, is quasiperiodic but not periodic with respect to ln ε.
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Proposition 11. Let ω = (1,�,˜�) be a cubic frequency vector of complex type. Con-
sider φ, θ and δ as defined in (37) and (47–48), and the vector u1 as in (46). For any
given q ∈ P , consider rq , ψq , Kq and γ ∗q as defined in (40) and (52–53). Then, the
resonant sequence s(q, ·) defined in (45) and its associated numerators γs(q,·) satisfy
the approximations

|s(q, n)|2 = Kq bs(q,n) · λn +O(λ−n/2), (54)

γs(q,n) = γ ∗q bs(q,n) +O(λ−3n/2), (55)

with an oscillating factor defined by

bs(q,n) := 1 + δ cos(2π · nφ + 2ψq − θ), (56)

and hence the numerators γs(q,·) oscillate as n→∞ between the values

γ−q := γ ∗q (1− δ), γ +
q := γ ∗q (1 + δ). (57)

Moreover, we have the lower bound

γ−q ≥
1− δ

2λ(1 + δ)
(|q| − Q0)

2, provided |q| ≥ Q0 := |u1|
2 |〈u1, ω〉| . (58)

For a proof, see [DGG14a].

Remark 12. We just outline here the main facts leading to the dominant behaviors (54–
55) described by this proposition, and show why this result is valid only in the case of
complex conjugates.On one hand, for any given resonant sequence, the size of the vectors
s(q, n) increases like λn/2 as n→∞ (with an oscillatory factor), since the (coincident)
modulus of the greatest eigenvalues of the iteration matrix U is λ1/2. On the other
hand, the small divisors |〈s(q, n), ω〉| decrease like λ−n according to the equality (42).
Therefore, the numerators γs(q,n) = |〈s(q, n), ω〉| · |s(q, n)|2 become bounded from
above and from below. This fact does not apply to the totally real case, in which the
conjugates of a cubic irrational number have different modulus.

Aswecan see in (55), the existenceof limit of the sequencesγs(q,n), stated in [DGG16]
for the quadratic case, is replaced in our complex cubic case by an oscillatory limit
behavior, with a lower limit lim inf

n→∞ γs(q,n) = γ−q and an upper limit lim sup
n→∞

γs(q,n) = γ +
q ,

introduced in (57). Notice that we could give the exact values of such limits due to the
irrationality of the phase φ appearing in the oscillating factors (56), stated in Lemma 7.

As another relevant fact, we stress that the amplitude of the limit oscillations is
proportional to the number δ introduced in (48). Since δ > 0 by Lemma 9, we can
ensure that such oscillations do occur.

An important consequence of the lower bound (58) is that the minimal value among
the values γ ∗q is reached for some concrete q̂ . Indeed, the values γ ∗q are not increasing in
general with respect to |q|, but the increasing lower bound (58) implies that lim|q|→∞ γ ∗q =
∞, and one has to check only a finite number of cases in order to detect a vector q̂
providing the minimal value among γ ∗q , q ∈ P . We define the primary resonances as
the integer vectors belonging to the sequence

s0(n) := s(q̂, n), (59)
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and we denote

γ ∗ := min
q∈P

γ ∗q = γ ∗̂q > 0, (60)

which can be considered as the “minimal mean Diophantine constant”. The fact that
γ ∗ > 0 implies that any non-totally real cubic frequency vector ω satisfies the Diophan-
tine condition (28) (with the minimal exponent 2), and we can compute explicitly the
“asymptotic Diophantine constant” (17):

lim inf|k|→∞ γk = lim inf
n→∞ γs0(n) = γ ∗(1− δ) = γ− > 0. (61)

Dividing by γ ∗, we also introduce normalized numerators and their associated asymp-
totic values, to be used in Sect. 3:

γ̃k := γk

γ ∗
, γ̃ ∗q :=

γ ∗q
γ ∗

, γ̃±q :=
γ±q
γ ∗

, (62)

and in this way we get γ̃ ∗̂q = 1 for the primary resonances.

Remark 13. (a) In principle, for some particular cubic frequency vectorsω, theminimum
in (60) could be reached by two or more vectors q and, consequently, there could
exist two or more sequences of primary resonances. In such a case, we denote by q̂
only one of such vectors q.

(b) Any primitive vector generating a sequence of primary resonances is essential: q̂ ∈
P0. Indeed, if q̂ is not essential, then we have k0(q̂) = c s(q, n0) with |c| > 1
and n0 ≥ 0, and therefore s(q̂, n) = c s(q, n0 + n), which implies by (29) that
γ ∗̂q = |c|3 γ ∗q , and the minimum in (60) would not be reached for q̂ .

We call secondary resonances the vectors belonging to any of the remaining se-
quences s(q, n), q ∈ P\{̂q}. We also consider the second minimum in (60):

min
q∈P\{̂q}

γ ∗q = γ ∗q̂ ′ , (63)

and we can call “main secondary resonances” the integer vectors in the sequence
s(q̂ ′, n). It is clear that its associated normalized numerator satisfies γ̃ ∗q̂ ′ ≥ 1.

In order to measure the “separation” between the primary and the secondary reso-
nances, we define the values

J+0 = J+0 (ω) :=
(

γ̃ +
q̂

)1/3 = (1 + δ)1/3, (64)

B−0 = B−0 (ω) :=
(

γ̃−q̂ ′
)1/3 =

(

γ̃ ∗q̂ ′
)1/3

(1− δ)1/3 (65)

(we included the exponent 1/3 for convenience, see Sect. 3). To have a clear distinction
between primary and secondary resonances we need the following “weak separation
condition”:

B−0 > J+0 , (66)

which says the interval [γ−q̂ , γ +
q̂ ] has no intersection with any other interval [γ−q , γ +

q ],
q �= q̂ (as happens for the cubic golden vector, see the next section).
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Fig. 2. Points (x, y) = (ln |k|,− ln |〈k, ω〉|) for the cubic golden frequency vector; the primary resonances
correspond to the points lying between the two straight lines y = 2x − ln γ±q̂

Additionally, it is interesting to visualize the separation between primary and sec-
ondary resonances in the following way. Taking logarithm of both sides of the Diophan-
tine condition (7), we can write it as

− ln |〈k, ω〉| ≤ 2 ln |k| − ln γ.

In Fig. 2 (which corresponds to the cubic golden vector), where we draw all the points
with coordinates (x, y) = (ln |k| ,− ln |〈k, ω〉|) (up to a large value of |k|), we can
see a sequence of points lying between the two straight lines y = 2x − ln γ±q̂ . Those
points correspond to integer vectors belonging to the sequence of primary resonances:
k = s0(n), n ≥ 0, and the remaining points correspond to secondary resonances.

2.3. The cubic golden frequency vector. In this section, we provide particular data for
the concrete case of the cubic golden frequency vector. We point out that a similar
approach could be carried out for other cubic vectors (see [Cha02] for some famous
examples).

We introduce � as the real number satisfying �3 = 1 − �, which has been called
the cubic golden number (see for instance [HK00]). Then, we consider the frequency
vector

ω = (1,�,�2) ≈ (1, 0.682328, 0.465571). (67)

In other words, the coefficients introduced in (22–23) are r0 = 1, r1 = −1, r2 = 0, a0 =

a1 = 0, a2 = 1, and hence the matrices defined in (35) and (27) are R =
⎛

⎝

0 1 0
0 0 1
1 −1 0

⎞

⎠

and A = Id.
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In fact, we can provide exact expressions for � using some of the standard formulas
for the solutions of the general cubic equation (see for instance [Wei03]). We have

� = S+ + S− = S± − 1

3S±
, with S± = 3

√

√

√

√

1

2

(

1±
√

31

27

)

,

or also

� = 2√
3
sinh

(

1

3
arsinh

3
√
3

2

)

.

It is easy, from the results of Sect. 2.1, to obtain the principal Koch’s matrix for the
frequency vector (67). By Lemma 5, any Koch’s matrix is determined from its first row
T(1) = (T11, T12, T13), by the formula T = T11 Id+T12R+T13R2. On the other hand, by
Remark 6 we can ensure that T ∗ = R−1 = Id + R2 is a Koch’s matrix but, in principle,
it might not be the principal one. To check whether another Koch’s matrix can be the
principal one, we carry out the exploration described after Lemma 5 in the following
way. We use that the matrix T ∗ given above has norm |T ∗| = (

√
5 + 1)/2 ≈ 1.618034,

and its first row T ∗(1) = (1, 0, 1) has norm
∣

∣

∣T ∗(1)
∣

∣

∣ = √2 ≈ 1.414214. Then, by exploring

the matrices T given by a few possible first rows T(1) (with norms between
√
2 and

(
√
5 + 1)/2), we ensure that the Koch’s matrix T ∗ given above is the principal one. We

rename it as T .
In this way, the principal Koch’s matrix for the cubic golden frequency vector (67),

and the subsequent matrix introduced in (41), are

T = R−1 =
⎛

⎝

1 0 1
1 0 0
0 1 0

⎞

⎠ , U = R� =
⎛

⎝

0 0 1
1 0 −1
0 1 0

⎞

⎠ ,

with the eigenvalue

λ = 1 + �2 = 1

�
≈ 1.465571, (68)

which satisfies λ3 = 1 + λ2.
Let us compute several relevant parameters, defined in Sect. 2.1. Writing the conju-

gates of � as �2,�2 = σ2 ± iσ3, by (25) we have

σ2 = −�

2
, σ3 = −

√
4 + 3�2

2
,

where the sign s = −1 chosen for σ3 in (25) ensures that λ2 = 1/�2 = 1/(σ2 + iσ3)
has positive imaginary part, and hence the the number defined in (37) is

φ = 1 +
1

π
arctan

−σ3

σ2
≈ 0.590935,

and it is irrational by Lemma 7. As stated in Theorem 1, the number φ is the frequency
ratio of the function h1(ε) as a quasiperiodic funtion (with respect to ln ε). It is inter-
esting to consider its (infinite) continued fraction and its associated convergents, whose
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denominators provide “approximate periods” for h1(ε) = F1(ζ ) (in the logarithmic
variable ζ ∼ ln(1/ε), see (81)):

φ = [0; 1, 1, 2, 4, 78, . . .] ≈ 1

1
,
1

2
,
3

5
,
13

22
,
1017

1721
, . . .

In particular, the convergent 13/22 is close enough to φ, and explains the fact that F1(ζ )

appears to be 22-periodic in Fig. 1. On the other hand, the number δ introduced in (48)
can be obtained by carrying out, for this particular case, the computations described in
Remark 10, and we get

δ =
√

−1 + 5�− 5�2 ≈ 0.289453. (69)

In the table below, wewrite down several numerical data appearing in Proposition 11,
for the resonant sequences s(q, n) induced by the primitives k0(q) (see (39) and (45)):
the numbers γ ∗q , the bounds γ−q and γ +

q , and the normalized values γ̃ ∗q (defined in (51–
53), (57) and (62), respectively; we also use the expressions (32) and (50) for the vectors
v j and u j ). We restrict such data to the primitives k0(q) with |q| < 3, and we provide a
lower bound for all other primitives (see (58)).

k0(q) = (−p, q) γ−q γ ∗q γ +
q γ̃ ∗q

(0, 0, 1) 0.345858 0.486749 0.627640 1
(−1, 2, 0) 1.037575 1.460248 1.882920 3
(−2, 1, 2) 3.112725 4.380743 5.648761 9
(0, 2,−2) 2.766867 3.893994 5.021121 8
|q| ≥ 3 ≥ 1.274218

Aswe see from this table, the smallest value of γ ∗q corresponds to q̂ = (0, 1), i.e. to the
primitive vector k0(q̂) = (0, 0, 1), which generates the sequence of primary resonances.
The minimum of the values γ ∗q is the “minimal mean Diophantine constant” introduced
in (60):

γ ∗ = γ ∗̂q =
2

31
(5 + � + 4�2) ≈ 0.486749

(the algebraic expression in the basis 1, �, �2 has also been obtained from the defini-
tion (51–53), working in the fieldQ(�)). On the other hand, we get for the “asymptotic
Diophantine constant” (61) the value γ− ≈ 0.345858. Other numerical values appear-
ing in Proposition 11 are θ ≈ −1.054837 and ψq̂ ≈ −2.007416 (the latter one for the
primary resonances), defined in (47) and (52) respectively.

Finally, in (64–65) we get

J+0 = (1 + δ)1/3 ≈ 1.088433, B−0 = 31/3(1− δ)1/3 ≈ 1.286979, (70)

and hence the weak separation condition (66) is fulfilled.

3. Searching for the Asymptotic Estimate

In order to provide an asymptotic estimate for the splitting, given in our main result
(Theorem 1) in terms of the splitting functionM(θ), we first need to carry out a careful
study of the first order approximation (3) provided by the Poincaré–Melnikov method.
Although this approximation is given by the (vector) Melnikov function M(θ), θ ∈ T3,
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it is more convenient to work with the (scalar) splitting potential L(θ), whose gradient
is the Melnikov function: ∇L(θ) = M(θ).

In this section, we provide the constructive part of the proof, which amounts to
find, for every sufficiently small ε, the dominant harmonic of the Fourier expansion
of the Melnikov potential L(θ), with an asymptotic estimate for its size of the type
exp{−h1(ε)/ε1/6}, with an oscillating (positive) function h1(ε) in the exponent. This
function can be explicitly defined from the arithmetic properties of our cubic frequency
vector ω and, as a direct consequence, we see that it is quasiperiodic (and continuous)
with respect to ln ε, and hence bounded (and we provide concrete lower and upper
bounds for it). We can also study, from such arithmetic properties, whether the dominant
harmonic is always given by a primary resonance (providing a sufficient condition for
this, which is satisfied in the case of the cubic golden frequency vector) or, otherwise,
secondary resonances can be dominant for some intervals of ε.

The final step, considered in Sect. 4, requires to ensure that the whole Melnikov
function M(θ) is dominated by its dominant harmonic, by obtaining a bound for the
sum of all the remaining harmonics of its Fourier expansion. Furthermore, to ensure
that the Poincaré–Melnikov method (3) predicts correctly the size of the splitting in
the singular case μ = εr , one has to extend the results to the splitting function M(θ)

by showing that the asymptotic estimate of the dominant harmonic is large enough to
overcome the harmonics of the error term in (3). This step is just outlined in Sect. 4,
since it is analogous to the one already done in [DG04] for the case of the quadratic
golden number (using the upper bounds for the error term provided in [DGS04]).

3.1. Estimates of the harmonics of the splitting potential. We plug our functions f and
h, defined in (9), into the integral (16) and get the Fourier expansion of the Melnikov
potential, where the coefficients can be obtained using residues (see for instance [DG00,
Sect. 3.3]):

L(θ) =
∑

k∈Z\{0}
Lk cos(〈k, θ〉 − σk), Lk = 2π |〈k, ωε〉| e−ρ|k|

sinh |π2 〈k, ωε〉| , (71)

where it is clear that Lk > 0, and the phases σk are the same as in (9). Recalling that
the fast frequencies ωε are given in (1) and taking into account the definition of the
numerators γk in (29), we can present each coefficient Lk = Lk(ε), k ∈ Z\ {0} (recall
that we introduced the set Z ⊂ Z3 in (10), to avoid repetitions in Fourier expansions),
in the form

Lk = αk e
−βk , αk(ε) ≈ 4π |〈k, ωε〉| = 4πγk

|k|2√ε
, (72)

βk(ε) = ρ |k| + π

2
|〈k, ωε〉| = ρ |k| + πγk

2 |k|2√ε
, (73)

where an exponentially small term has been neglected in the denominator of αk . The
most relevant term in this expression is βk , which gives the exponential smallness in ε of
each coefficient, and we will show that αk provides a polynomial factor. For any given
ε, the smallest exponents βk(ε) provide the largest (exponentially small) coefficients
Lk(ε) and hence the dominant harmonics. Our aim is to study the dependence on ε of
the size of the most dominant harmonic.
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To start, we provide a more convenient expression for the exponents βk(ε), which
shows that the smallest ones are O(ε−1/6). Indeed, we deduce from (73) that we can
write

βk(ε) = C0

ε1/6
gk(ε), C0 := 3

2
(πρ2γ ∗)1/3, (74)

where for any given k we introduce the function

gk(ε) := γ̃
1/3
k

3

[

2

(

ε

εk

)1/6

+
(εk

ε

)1/3
]

, εk := D0γ̃
2
k

|k|6 , D0 :=
(

πγ ∗

ρ

)2

. (75)

It is straightforward to check that each function gk(ε) attains its minimum at ε = εk ,
with the (positive) minimum value gk(εk) = γ̃

1/3
k . Recall that the constant γ ∗ = γ ∗̂q and

the normalized numerators γ̃k = γk/γ
∗ were introduced in (60) and (62), respectively.

Since we are interested in obtaining asymptotic estimates for the splitting distance,
rather than lower bounds, we need to determine for any given ε the most dominant
harmonic, which is given by the smallest value gk(ε), reached for some integer vector
k = S1(ε) to be determined. In fact, as in [DGG16] we may replace, for ε small,
the functions gk(ε) by approximations g∗k (ε), obtained by neglecting the asymptotic
terms going to 0 in Proposition 11. More precisely, for k = s(q, n) belonging to a
concrete resonant sequence, we use the approximations (54–55) for |s(q, n)| and γs(q,n)

as n→∞, given in Proposition 11, and we obtain the following approximations:

gs(q,n)(ε) ≈ g∗s(q,n)(ε) :=
(γ̃ ∗q bs(q,n))

1/3

3

⎡

⎣2

(

ε

ε∗s(q,n)

)1/6

+

(

ε∗s(q,n)

ε

)1/3
⎤

⎦ , (76)

εs(q,n) ≈ ε∗s(q,n) :=
D0(γ̃

∗
q )2

K 3
q bs(q,n) · λ3n , (77)

with the oscillating factors bs(q,n) introduced in (56). Notice that each function g∗s(q,n)(ε)

has its minimum at ε∗s(q,n), whose dependence on n is not strictly geometric (decreasing

with ratio λ3), but “perturbed” by the oscillating factor bs(q,n). Analogously, the min-
imum values g∗s(q,n)(ε

∗
s(q,n)) = γ̃ ∗q bs(q,n) are not constant but oscillating. The size of

such “perturbations” is given by the value δ introduced in (48).

Remark 14. The most dominant harmonic cannot be found in a non-essential resonant
sequence. Indeed, if s(q, n) = c s(q, n0 + n) with |c| > 1 and n0 ≥ 0, then g∗s(q,n)(ε) =
|c| g∗s(q,n0+n)(ε) (see also Remark 13(b)).

The sequence of primary resonances s0(n) = s(q̂, n), defined in (59), plays an
important role since it gives the smallest minimum values among the functions g∗k (ε),
and hence they will provide the most dominant harmonics, at least for ε close to such
minima. With this fact in mind, and recalling that γ̃ ∗̂q = 1, we introduce

gn(ε) := g∗s0(n)(ε) =
b
1/3
n

3

[

2

(

ε

ε̄n

)1/6

+

(

ε̄n

ε

)1/3
]

, (78)

ε̄n := ε∗s0(n) =
D0

K 3
q̂ bn · λ3n

, (79)

bn := bs0(n) = 1 + δ cos(2π · nφ + 2ψq̂ − θ), (80)
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where the constants φ, θ , δ, ψq̂ , Kq̂ and D0 are introduced in (37), (47–48), (52–53)
and (75), respectively.

In order to determine the most dominant harmonic for any given ε, we have to
study the relative position of the functions g∗s(q,n)(ε) and the intersections between their
graphs. Due to the (essentially) geometric behavior of the minima ε∗s(q,n) as n→∞, it
is convenient to replace ε by a logarithmic variable:

ζ = Lg
D0

K 3
q̂

− Lg ε, i.e. ε = D0

K 3
q̂ λ3ζ

(81)

(notice that ζ →∞ as ε→ 0+), where we introduce the notation

Lg x := log(λ3) x =
ln x

3 ln λ
.

We define for any given Z ∈ R and Y > 0 the following “hyperbolic cosine-like”
function:

C(ζ ; Z ,Y ) := Y 1/3 C0(ζ − Z), C0(ζ ) := 1

3
(2λ−ζ/2 + λζ ). (82)

Any function C(ζ ; Z ,Y ) has its minimum at ζ = Z with C(Z ; Z ,Y ) = Y 1/3 as
the minimum value, and is a convex function. In fact, the point (Z ,Y 1/3) of its graph
determines the function, and the graph becomes divided at this point into a “decreasing
branch” (ζ < Z ) and an “increasing branch” (ζ > Z ).

Translating definitions (76–79) of g∗s(q,n)(ε), ε
∗
s(q,n), gn(ε), ε̄n into the new variable,

we get:

f ∗s(q,n)(ζ ) := C(ζ ; ζ ∗s(q,n), γ̃
∗
q bs(q,n)), (83)

ζ ∗s(q,n) := n + 3Lg
Kq

Kq̂
− 2 Lg γ̃ ∗q + Lg bs(q,n), (84)

f n(ζ ) := C(ζ ; ζ̄n, bn). ζ̄n := n + Lg bn . (85)

Notice that, if the oscillating termsbs(q,n) are not taken into account (i.e. ifwe assume δ =
0 in (48)), the graph of a function f ∗s(q,n+1) is a translation of f ∗s(q,n) to distance 1, which
would be the situation for the case of quadratic frequencies considered in [DGG16].
What we actually have for cubic frequencies is an O(δ)-perturbation of this situation,
due to the terms bs(q,n) defined in (56).

Remark 15. In fact, if analogous computations are carried out for the quadratic case,
the function C0(ζ ) introduced in (82) should be replaced by an expression of the type
(λ−ζ + λζ )/2 = cosh(ζ ln λ) (with a somewhat different definition of the variable ζ ).
An expression of this type in asymptotic estimates for the splitting appeared for the first
time in [DGJS97] (see also [DG04]). We point out that our “hyperbolic cosine-like”
function C0(ζ ) is no longer an even function of ζ in the cubic case considered here,
according to the definition (82). In other words, the symmetry of the “true” hyperbolic
cosine function cosh(ζ ln λ) between the decreasing and increasing branches, that takes
place in the quadratic case, is not preserved in the cubic case.
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In order to study the dependence of the most dominant harmonics on ε, now replaced
by the logarithmic variable ζ introduced in (81), it is useful to consider the intersections
between the graphs of functions (83), since this gives the values of ζ at which a change in
the dominancemay take place. The next two lemmas show that, if we consider the graphs
associated to the functions f ∗k (ζ ) and f ∗

k
(ζ ) associated to different quasi-resonances k, k,

only two situations are possible: they do not intersect (which says that one of them always
dominates the other one), or they intersect transversely at a unique point (and in this
case a unique change in the dominance takes place among such two quasi-resonances).
Namely, in Lemma 16 we show that f ∗k and f ∗

k
cannot be the same function, and in

Lemma 17 (formulated, by convenience, in terms of the functions introduced in (82))
we provide the condition for the existence of intersection between their graphs, as well
as an explicit formula for this intersection, and some additional bounds to be used later.
Recall that the sets Z and A are defined in (10) and (38).

Lemma 16. For any given k, k ∈ A∩Z with k �= k, the functions f ∗k (ζ ) and f ∗
k
(ζ ) do

not coincide.

Proof. Recalling the definition (45), let us write k = s(q, n) and k = s(q, n). If f ∗k =
f ∗
k
, then we have g∗k = g∗

k
and, by definition (76), we get γ̃ ∗q bk = γ̃ ∗q bk and ε∗k = ε∗

k
.

By (53), such two equalities can be rewritten as
∣

∣rq
∣

∣ Kqbk =
∣

∣rq
∣

∣ Kqbk and Kqbkλn =
Kqbkλ

n , respectively.We deduce that the small divisors (40) satisfy
∣

∣rq/rq
∣

∣ = λn−n but,
from the fundamental property (43), we have

∣

∣rq
∣

∣ ,
∣

∣rq
∣

∣ ∈ (1/2λ, 1/2). This says that
n = n and hence

∣

∣rq
∣

∣ = ∣

∣rq
∣

∣, but from definition (40) and the fact thatω is a nonresonant
vector we deduce that q = ±q , which contradicts the assumption k �= k (recall that
k, k ∈ Z). ��
Lemma 17. Let Z1, Z2 ∈ R and Y1,Y2 > 0 with (Z1,Y1) �= (Z2,Y2), and define

Z = Z2 − Z1, W =
(

Y2
Y1

)1/3

.

Then, we have:

(a) The graphs of the functions C(ζ ; Z1,Y1) and C(ζ ; Z2,Y2) intersect if and only if
λZ < min(W,W−2) or λZ > max(W,W−2). If so, the intersection is unique and
transverse, and takes place at the point given by

ζ ∗ = Z1 + 2 Lg
2λZ (WλZ/2 − 1)

λZ −W
. (86)

(b) The following upper/lower bound holds:

ζ ∗ < Z1 + 2 Lg
2λZ

W − λZ
if λZ < min(W,W−2),

ζ ∗ > Z1 + 2 Lg 2(WλZ/2 − 1) if λZ > max(W,W−2).

Proof. Introducing the variable ξ = ζ − Z1, we see from definition (82) that the in-
tersection between the graphs of C(ζ ; Z1,Y1) and C(ζ ; Z2,Y2) corresponds to the
solution of the equation C0(ξ) = W C0(ξ − Z), where we have (Z ,W ) �= (0, 1). Af-
ter some straightforward computations, we see that this solution ξ = ξ∗ is given by
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λ3ξ
∗/2 = 2λZ (WλZ/2 − 1)

λZ −W
, which leads directly to the formula (86) for ζ ∗ = Z1 + ξ∗.

Notice that the intersection does not take place if λZ belongs to the interval of endpoints
W and W−2 (indeed, in this case the numerator and denominator in the expression (86)
would have different sign).

To complete the proof of (a), we have to show the transversality of the intersec-
tion. This amounts to see that the solution obtained above does not satisfy the equa-
tion C′0(ξ∗) = W C′0(ξ∗ − Z). Indeed, solving this new equation we get λ3ξ

∗/2 =
λZ (WλZ/2 − 1)

W − λZ
, which is possible only if λZ does belong to the interval of endpoints

W and W−2 (the case excluded above).
The proof of the bound (b) for ζ ∗, in the two cases considered, is straightforward

from the formula (86). ��

3.2. Estimate of the most dominant harmonic. We introduce the positive function h1(ε)
appearing in the exponent in Theorem 1 as the minimum, for any given ε, of the values
g∗k (ε) among the quasi-resonances, and we denote S1 = S1(ε) the integer vector k at
which such minimum is reached:

h1(ε) := min
k∈A

g∗k (ε) = g∗S1(ε). (87)

In fact, by Remark 14 the integer vector providing the minimum is always an essential
quasi-resonance: S1(ε) ∈ A0.

Our aim is to study some of the properties of h1(ε), putting emphasis on the de-
pendence of such functions on the arithmetic properties of the cubic frequency vector
ω, studied in Sect. 2. Namely, we prove that the function h1(ε) satisfies the following
properties:

• It ispiecewise-smooth andpiecewise-convex (and continuous),with corners (i.e. jump
discontinuities of the derivative) associated to changes in the dominant harmonic
(i.e. discontinuities of the “piecewise-constant” function S1(ε)).
• It is bounded, providing (positive) lower and upper bounds for it.
• It is quasiperiodic (and not periodic) with respect to ln ε, with two frequencies
whose ratio is the irrational number φ defined in (37).

As in Sect. 3.1, we can translate the function h1(ε) into the logarithmic variable ζ

introduced in (81):

F1(ζ ) := min
k∈A

f ∗k (ζ ) = f ∗R1
(ζ ),

with R1 = R1(ζ ) = S1(ε). We also define an analogous but somewhat simpler function,
taking into account only the primary resonances s0(n) introduced in (59) and involved
in (80) and (85):

F1(ζ ) := min
n≥0 f n(ζ ) = f N1

(ζ ), (88)

with N1 = N1(ζ ). In other words, the most dominant harmonic among the primary
resonances corresponds to R1 = R1(ζ ) = s0(N1).
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Clearly, for any ζ we have

F1(ζ ) ≤ F1(ζ ). (89)

In order to provide an accurate description of the splitting, it is useful to study whether
the equality between the above functions can be established for any value of ζ , or there
exist some intervals of ζ where it does not hold. This amounts to study whether the
dominant harmonics can always be found among the primary resonances (R1 = R1) or,
on the contrary, secondary resonances have to be taken into account (and in this case the
function F1(ζ ) is somewhat more complicated). Such two possiblities also take place in
the quadratic case considered in [DGG16].

We can provide an alternative definition for F1(ζ ) as the minimum of the following
functions, associated to any given resonant sequence s(q, n):

˜F (q)
1 (ζ ) := min

n≥0 f ∗s(q,n)(ζ ) (90)

(for the primary resonances, we have ˜F (q̂)
1 = F1). Clearly, it is enough to consider

essential primitives (q ∈ P0), and hence we can write

F1(ζ ) = min
q∈P0

˜F (q)
1 (ζ ). (91)

Such functions ˜F (q)
1 (ζ ) are completely analogous to F1(ζ ). We are going to study only

the function F1(ζ ), showing that it is quasiperiodic and providing lower and upper
bounds for it, and the same will hold for ˜F (q)

1 (ζ ), with the bounds multiplied by the
factor (γ̃ ∗q )1/3 ≥ 1 in view of (83). Notice also that only a finite number of primitives
q are involved in (91), due to the fact that the (normalized) limits γ̃ ∗q have the lower
bound (58), which is increasing with respect to |q|.
Remark 18. Although we implicitly assume that there exists only one sequence of pri-
mary resonances (see Remark 13(a)), it is not hard to adapt our definitions and results to
the case of two or more sequences of primary resonances. In this case, we would choose
in (59) one of such sequences as “the” sequence s0(n), when the functions gn(ε) and
f n(ζ ) are defined in (78) and (85) (see also [DGG16]).

Now we proceed to study the function F1(ζ ) introduced in (88). Notice that we can
regard this function as an O(δ)-perturbation of the function obtained if we had δ = 0
in (48) (and hence bn = 1 in (80)). Of course, this is fictitious since δ is determined
by the frequency vector ω and is not a true parameter. With this in mind, we define
“unperturbed” functions

f
(0)
n (ζ ) := C(ζ ; n, 1) = C0(ζ − n),

F
(0)
1 (ζ ) := min

n
f
(0)
n (ζ ) = f

(0)

N (0)
1

(ζ ). (92)

The index N (0)
1 = N (0)

1 (ζ ) providing the minimum can easily be determined. On one

hand, we use that each function f
(0)
n (ζ ) reaches it minimum at ζn = n. On the other

hand, applying Lemma 17(a) (with Z = 1 and W = 1) we find its corners, given by
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the (transverse) intersection between the graphs of consecutive functions f
(0)
n (ζ ) and

f
(0)
n+1(ζ ):

ζ ′n := n + ξ0, ξ0 := 2 Lg
2λ√
λ + 1

, i.e. λ3ξ0/2 = 2λ√
λ + 1

. (93)

Hence, we can write ξ0 = ξ0(ω) and, using that λ > 1, it is not hard to see that 1/3 <

ξ0 < 1/2 (see in Sect. 3.4 the concrete value for the case of the cubic golden vector).
Introducing the intervals In := [ζ ′n−1, ζ ′n], we see that N (0)

1 (ζ ) = n for any ζ ∈ In
(strictly speaking, there are two possible values at the endpoints ζ ′n of the intervals). In

this way, the function N (0)
1 (ζ ) is “piecewise-constant” with jump discontinuities at the

points ζ ′n , and the function F
(0)
1 (ζ ) is 1-periodic, continuous and piecewise-smooth with

corners at the same points ζ ′n . We also obtain the following extreme values:

min F
(0)
1 (ζ ) = F

(0)
1 (n) = C0(0) = 1, (94)

max F
(0)
1 (ζ ) = F

(0)
1 (ζ ′n) = C0(ξ0) = C0(ξ0 − 1)

= J (0)
1 = J (0)

1 (ω) := 1

3

⎡

⎣2

(√
λ + 1

2λ

)1/3

+

(

2λ√
λ + 1

)2/3
⎤

⎦ . (95)

Returning to the “perturbed” function F1(ζ ), the next lemma shows that, for any ζ ,
the index N1(ζ ) providing the minimum in definition (88), can be found among a finite
number (not depending on ζ ) of values around N (0)

1 (ζ ).

Lemma 19. For any ζ , we have N (0)
1 (ζ ) − N− ≤ N1(ζ ) ≤ N (0)

1 (ζ ) + N+, where we
define

N− = N−(ω) := logλ

[

max

(

1 + δ

1− δ
, 2(1 + δ)1/2λ3(1−ξ0)/2 + 1

)]

,

N+ = N+(ω) := logλ

[

max

(

1 + δ

1− δ
,

(

λ3ξ0/2 + 2(1 + δ)1/2

2(1− δ)1/2

)2
)]

.

Proof. Let us assume that ζ belongs to a concrete interval In , where we have N (0)
1 (ζ ) =

n. In order to show that N1(ζ ) belongs to the interval [n − N−, n + N+], we have to
show that, for any m not belonging to this interval, we have

f m(ζ ) > f n(ζ ) for any ζ ∈ In . (96)

To study the relative position of the functions f n(ζ ) and f m(ζ ) (defined in (85)), we will
apply Lemma 17 showing that their graphs do intersect at a point ζ ∗n,m , which satisfies:

ζ ∗n,m < ζ ′n−1 if m − n < −N−,

ζ ∗n,m > ζ ′n if m − n > N+,
(97)

which says that the (unique) intersection takes place outside the interval In , and implies
the inequality (96).
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In order to apply Lemma 17, we consider the values Z = ζ̄m − ζ̄n and W =
(bm/bn)1/3, which satisfy the equality

λZ = W λm−n . (98)

On the other hand, recalling that bn, bm ∈ [1− δ, 1 + δ], we have
(

1− δ

1 + δ

)1/3

≤ W ≤
(

1 + δ

1− δ

)1/3

.

To prove the first assertion of (97), we use the first bound of Lemma 17(b), which
reads

ζ ∗n,m < ζ̄n + 2 Lg
2λm−n

1− λm−n
if λm−n < min(1,W−3),

where we the equality (98) has been taken into account. By the definition of N−, it is
clear that λn−m >

1 + δ

1− δ
≥
(

min(1,W−3)
)−1

. Moreover, the inequality ζ ∗n,m < ζ ′n−1
holds provided

Lg bn + 2Lg
2λm−n

1− λm−n
≤ −1 + ξ0.

Replacing bn by 1 + δ, the subsequent inequality can be rewritten as

λn−m ≥ 2(1 + δ)1/2λ3(1−ξ0)/2 + 1,

also included in the definition of N−, which completes the proof of the first assertion
of (97).

For the second assertion of (97) we can proceed in similar terms, using the second
bound of Lemma 17(b). Nevertheless, the associated computations are somewhat differ-
ent due to the lack of symmetry of the functions f n(ζ ) in the cubic case (see Remark 15).
We omit the details. ��

In the following proposition, we provide a lower and an upper bound for the functions
F1(ζ ) and F1(ζ ), and hence for h1(ε), as O(δ)-perturbations of the values obtained
in (94–95). More precisely, such bounds will be given by the values

J−0 = J−0 (ω) := (1− δ)1/3, J+1 = J+1 (ω) := J (0)
1 (1 + δ)1/3, (99)

which satisfy 0 < J−0 < 1 < J (0)
1 < J+1 . Recall that lower and an upper bounds for

h1(ε) or, equivalently, for F1(ζ ), can be associated to upper and lower bounds for the
splitting distance, respectively (see also [DGG14a]). Recalling the value B−0 = B−0 (ω)

defined in (65), we also introduce the “strong separation condition”:

B−0 ≥ J+1 , (100)

which is somewhat more restrictive than the “weak separation condition” introduced
in (66). Under the strong condition, the inequality (89) becomes an equality, i.e. the
dominant harmonic is always given by a primary resonance, and hence the function
F1(ζ ) = h1(ε) becomes somewhat simpler. Such a condition is fulfilled for the cubic
golden frequency vector, as we show in Sect. 3.4.
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Proposition 20. The functions F1(ζ ) and F1(ζ ) are positive, continuous and piecewise-
smooth, and satisfy for any ζ the bounds:

J−0 ≤ F1(ζ ) ≤ F1(ζ ) ≤ J+1 ,

with J−0 and J+1 defined in (99). Moreover, if the strong separation condition (100) is
fulfilled, then we have F1(ζ ) = F1(ζ ) for any ζ , and hence the most dominant harmonic
is always given by a primary resonance.

Proof. The lower bound for F1(ζ ) is a direct consequence of (90–91), using that for any
k = s(q, n) ∈ A we have the lower bound

f ∗s(q,n)(ζ ) ≥ (γ̃ ∗q bs(q,n))
1/3 ≥ (1− δ)1/3, (101)

which comes from (83), using also that bs(q,n) ≥ 1− δ by (56).
To provide an upper bound for F1(ζ ), we take into account that bn ≤ 1 + δ and

introduce the function

F
+
1 (ζ ) := min

n≥0 f
+
n(ζ ), f

+
n(ζ ) := C(ζ ; ζ̄ +

n , 1 + δ), ζ̄ +
n := n + Lg(1 + δ),

defined as in (88) but replacing bn by 1 + δ in (85). Notice that the function F
+
1 (ζ ) can

easily be related to the “unperturbed” function defined in (92): for any ζ , we have

F
+
1 (ζ ) = (1 + δ)1/3 F

(0)
1 (ζ − Lg(1 + δ)),

and we deduce from (95) and (99) that max F
+
1 (ζ ) = J+1 .

We study the relative position of the graphs of the functions f n(ζ ) and f
+
n(ζ ) by

applying Lemma 17(a), with Z = ζ̄ +
n − ζ̄n = Lg((1 + δ)/bn) and W = ((1 + δ)/bn)1/3.

In general we have bn < 1 + δ and, since λZ = W , the graphs do not intersect and we
have f n(ζ ) < f

+
n(ζ ) for any ζ . Instead, if bn = 1 + δ (a rather particular case) then the

two functions obviously coincide. We deduce, for any ζ , the bound

F1(ζ ) ≤ F
+
1 (ζ ) ≤ J+1 . (102)

Finally, to show that the strong separation condition (100) implies the equality
F1(ζ ) = F1(ζ ), it is enough to see that a lower bound for the functions ˜F (q)

1 (ζ ) in-
troduced in (90), for q �= q̂ , is greater than the upper bound J+1 for F1(ζ ), obtained
above. Indeed, for secondary resonances s(q, n), with q �= q̂ , the lower bound (101)
becomes

f ∗s(q,n)(ζ ) ≥
(

γ̃ ∗q̂ ′(1− δ)
)1/3 = B−0 ≥ J+1 ,

whereγ ∗q̂ ′ is theminimumof the “meanDiophantine constants” for secondary resonances

(see (63)), and the same lower bound holds for the functions ˜F (q)
1 (ζ ), q �= q̂ . ��
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Remark 21. It is an interesting question whether the lower and upper bounds J−0 and
J+1 provided by this proposition are sharp, i.e. they coincide with the infimum and the
supremum of the function F1(ζ ). On one hand, we can expect the lower bound J−0
(and hence the upper bound for the splitting) to be sharp, since for primary resonances
the lower bounds (101) are given by the factors bn , which will can be arbitrarily close
to 1 − δ for suitable n. Instead, in general the upper bound J+1 (and hence the lower
bound for the splitting) is far from being sharp, because it has been obtained in (102) by
considering, for all n, the worst possible case in the bound bn ≤ 1 + δ. In Sect. 3.3, we
prove the sharpness of the lower bound J−0 and show that, for a given frequency vector
ω, we can give (numerically) a sharp upper bound J ∗1 (≤ J+1 ), using the quasiperiodicity
of the function F1(ζ ). In the same way, it would be enough to assume that B−0 ≥ J ∗1 ,
instead of (100), in order to ensure that the splitting can be described in terms of only
the primary resonances. This value J ∗1 is computed in Sect. 3.4 for the concrete case of
the cubic golden frequency vector.

To end this section, we also deduce some useful properties of the function S1 = S1(ε),
giving the dominant harmonic. Namely, this function is “piecewise-constant”, with jump
discontinuities exactly at the corners of h1(ε). Moreover, its asymptotic behavior as
ε→ 0 turns out to be polynomial:

|S1(ε)| ∼ 1

ε1/6
. (103)

Indeed, the most dominant harmonic belongs to some resonant sequence: we can write
S1(ε) = s(q, N ) for some q = q(ε), and for N = N (ε) such that the value ε∗s(q,N ) is
close to ε, among the sequence ε∗s(q,n),n ≥ 0.Recalling (77) and the estimate |s(q, N )| ∼
λN/2 = (

λ3N
)1/6

deduced from (54), we get (103). Notice that it is not necessary
to include q in the estimate (103) (in spite of the fact that Kq and γ̃ ∗q appear in the
expression (77)), since only a finite number of resonant sequences s(q, ·) is involved.

3.3. Quasiperiodicity of the estimate of the most dominant harmonic. Now, our aim is
to show that the function F1(ζ ) is quasiperiodic with frequencies 1 and φ. As we show
below, this property is directly related to the oscillating factors bs(q,n) introduced in (56)
for each resonant sequence, denoted bn in (80) for the particular case of the primary
resonances. Moreover, the facts that φ is an irrational number by Lemma 7, and δ > 0
by Lemma 9, allow us to ensure that the function F1(ζ ) is not periodic, which makes
an important difference with respect to the case of quadratic frequencies considered in
[DGG16].

Recall that, in (91), we wrote F1(ζ ) as the minimum of the functions ˜F (q)
1 (ζ ), as-

sociated to each resonant sequence s(q, n). Since all such functions are analogous to
the function F1(ζ ), associated to the primary resonances s0(n) and defined in (88), it is
enough to show the quasiperiodicity of F1(ζ ).

As a rough explanation for the frequencies 1 and φ, notice that we can consider F1(ζ )

as an O(δ)-perturbation of the function F
(0)
1 (ζ ) introduced in (92), which is 1-periodic

with respect to ζ , and the oscillating factors bn defined in (80) give rise to the second
frequency φ.

To be more precise, we are going to construct a positive, continuous and piecewise-
smooth function ϒ(x, y), defined on R2 and 1-periodic with respect to x and y, such
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Fig. 3. The function ϒ(x, y) on R2 “interpolating” F1(ζ ) along the straight lines x = ζ , y = φ ζ , and its
reduction to the torus T 2∗ (the slope φ ≈ 0.590935 corresponds to the case of the cubic golden vector)

that

ϒ(ζ, φ ζ ) = F1(ζ ) for any ζ ≥ ζ0 (104)

(for some ζ0 to be determined below, in Proposition 23). Equivalently, we can consider
ϒ(x, y) as defined on a torus T 2∗ , with T∗ := R/Z represented as the interval [0, 1),
and the above equality can be rewritten as

ϒ(ζ, {φ( j + ζ )}) = F1( j + ζ ) (105)

for any integer j ≥ 0 and ζ ∈ [0, 1), with j + ζ ≥ ζ0

where {a} ∈ [0, 1) denotes the fractional part of a given number a ∈ R. This property
of “interpolation” is illustrated in Fig. 3.

Like F1(ζ ), defined in (88) as the minimum of the functions f n(ζ ), the “interpo-
lating” function ϒ(x, y) will be defined in a similar way, as the minimum of a family
functions. First of all, we define the 1-periodic function

β(y) := 1 + δ cos(2π · y + 2ψq̂ − θ), y ∈ R,

and it is clear that the oscillating factors (80) are “interpolated”by this function:β({nφ}) =
bn for any n (we can say that the values {nφ}, filling densely the circle T∗, are replaced
by the continuous variable y). Now, recalling the “hyperbolic cosine-like” functions
C(ζ ; Z ,Y ) introduced in (82), we define for n ∈ Z the functions

χn(x, y) := C(x ; n + Lgβ(y − φ x + {nφ}), β(y − φ x + {nφ})), (x, y) ∈ R2,

(106)

which are clearly smooth and 1-periodic with respect to y, but not periodic with respect
to x . Finally, we define

ϒ(x, y) := min
n∈Z χn(x, y) = χ

˜N1
(x, y), (x, y) ∈ R2, (107)

with ˜N1 = ˜N1(x, y) (compare with (88)).
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It is clear that the functionsχn(x, y) are closely related to the functions f n(ζ ) defined
in (85), as we see from the definition (106), by restricting (x, y) to straight lines of slope
φ. To express this relationship more clearly we define, for any y0 ∈ R, a function of one
variable by restricting χn(x, y) to any straight line y = y0 + φ x for a given y0,

χ̂n(x ; y0) := χn(x, y0 + φ x) = C(x ; x̄n(y0), β̄n(y0)), (108)

x̄n(y0) := n + Lg β̄n(y0), β̄n(y0) := β(y0 + {nφ})
(compare with (85)). We can also define

̂ϒ(x ; y0) := min
n∈Z χ̂n(x ; y0) = χ̂

̂N1
(x ; y0), (109)

and it is clear that ̂ϒ(x ; y0) = ϒ(x, y0 + φ x), and also ̂N1(x ; y0) = ˜N1(x, y0 + φ x)
(with the difference that ϒ is 1-periodic and can be reduced to T 2∗ , see Proposition 23,
but the periodicity with respect to x does not hold for ̂ϒ).

Some of the properties stated in the following lemma are clearly inherited from the
results of Lemmas 16, 17 and 19.

Lemma 22. (a) The functions χn(x, y) are smooth and 1-periodic with respect to y, and
satisfy the following translation property:

χn(x + 1, y) = χn−1(x, y), for any (x, y) ∈ R2, n ∈ Z.

(b) For any given n and y0 ∈ R, the function χ̂n(x ; y0) is convex (with respect to x)
and attains its minimum at x = x̄n(y0), with the minimum value β̄n(y0)1/3. The
dependence of χ̂n(x ; y0) on the parameter y0 is 1-periodic.

(c) For any given n, the function χn(x, y) attains its minimum at the point (x, y) =
(x̃n, ỹn), with

x̃n = n + Lg(1− δ), ỹn ≡ π − 2ψq̂ + θ

2π
+ φ Lg(1− δ) (mod 1),

with the minimum value (1− δ)1/3.
(d) For any given n,m with n �= m, and y0 ∈ R, the functions χ̂n(x ; y0) and χ̂m(x ; y0)

do not coincide. Their graphs intersect transversely at a unique point, or do not
intersect. The set Yn,m of values y0 such that the intersection exists is a union of open
intervals (or eventually Yn,m = R, Yn,m = ∅). For y0 ∈ Yn,m, the intersecting point
x = x∗n,m(y0) (given explicitly in (110)) is a smooth and 1-periodic function of y0.

(e) For any given n,m with n �= m, the graphs of the functions χn(x, y) and χm(x, y)
intersect (if they do) transversely along the curves parameterized by

x = x∗n,m(y0), y = y0 + φ x∗n,m(y0), y0 ∈ Yn,m .

(f) For any (x, y), we have N (0)
1 (x) − N− ≤ ˜N1(x, y) ≤ N (0)

1 (x) + N+, with N (0)
1 (x)

as in (92), and N± = N±(ω) as in Lemma 19.

Proof. The only assertion to be checked in (a) is the translation property. For that, it is
enough to ensure that

β(y − φ(x + 1) + {nφ}) = β(y − φ x + {(n − 1)φ}),
but this is a direct consequence of the 1-periodicity of β(y). The proof of (b) is straight-
forward from the definition of the functions χ̂n(x ; y0) in (108). We also get (c) as a
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direct consequence of (b), choosing y0 = y(n)
0 such that β̄n(y0) attains its minimum

value 1− δ, and hence x̃n = x̄n(y
(n)
0 ), ỹn = y(n)

0 + φ x̃n .
For (d), we first notice that the functions χ̂n(x ; y0) and χ̂m(x ; y0) do not coincide,

since β̄n(y0) �= β̄m(y0) (due to the irrationality of φ). Then, we directly apply Lemma 17

with Z = x̄m(y0) − x̄n(y0) and W = (β̄m(y0)/β̄n(y0))1/3. We get the formula for the
intersecting point,

x∗n,m(y0) = x̄n(y0) + 2 Lg
2λZ (WλZ/2 − 1)

λZ −W
. (110)

If the intersection exists, it is unique, but its existence may depend on y0, according to
the condition given in Lemma 17. We also get (e) as a direct consequence of (d).

Finally, for the proof of (f), for any y0 we consider the function ̂ϒ(x ; y0) defined
in (109), and it is enough to prove that N (0)

1 (x)−N− ≤ ̂N1(x ; y0) ≤ N (0)
1 (x)+N+.Now,

we can use that the functions χ̂n(x ; y0) introduced in (108) are completely analogous
to the functions f n(ζ ) in (85), replacing bn by β̄n(y0), and ζ̄n by x̄n(y0). Then, the proof
follows exactly as in Lemma 19, using the values of Z and W defined above. ��
Proposition 23. The functionϒ(x, y) is continuousandpiecewise-smooth, and1-periodic
with respect to x and y, and satisfies the “interpolation” property (104) for ζ ≥ ζ0 :=
N− + ξ0 (recall that ξ0 is defined in (93)).

Proof. First of all, from definitions (85) and (106), it is not hard to see that the equality
χn(ζ, φ ζ ) = χ̂n(ζ ; 0) = f n(ζ ) is fulfilled for any n ≥ 0 and ζ ∈ R (we only have to
use that β̄n(0) = bn). By Lemma 22(f), we can take the minimum over n by restricting
ourselves to a finite number of cases, N (0)

1 (ζ ) − N− ≤ n ≤ N (0)
1 (ζ ) + N+, and we

directly get the equality (104), or equivalently (105). However, in order to ensure that
n ≥ 0 as in the definition (88), we need that N (0)

1 (ζ ) ≥ N−. As can be seen in (92), we
have N (0)

1 (ζ ) ≥ ζ − ξ0, and hence we assume ζ ≥ N− + ξ0.
The fact that ϒ(x, y) is, for any (x, y), the minimum of a finite number of smooth

functions ensures that it is continuous and piecewise-smooth. It is also clear that it is
periodic with respect to y, since so are the functions χn(x, y). Finally, its periodicity
with respect to x is easily deduced from the translation property of Lemma 22(a). ��

In this way, by studying the function ϒ(x, y) on the torus T 2∗ we can determine
the intervals of dominance for the function F1(ζ ), in (88). It is enough to divide T 2∗
into a finite number of regions, according to the function χn(x, y) giving the minimum
in (107). Since for x ∈ [0, 1) the index N (0)

1 (x) is either 0 or 1, by Lemma 22(f) it is
enough to consider the functions χn(x, y)with−N− ≤ n ≤ 1+N+. The regions visited
by the straight line (ζ, φ ζ ) correspond the intervals of dominance for F1(ζ ). See Fig. 4
for an illustration, for the concrete case of the cubic golden vector (we point out that the
borders between neighbor regions are not straight lines, but rather pieces of the curves
parameterized in Lemma 22(e)).

Numerically, we can obtain sharp bounds for the function F1(ζ ), improving the ones
given in Proposition 20. Since φ is irrational, the line (ζ, φ ζ ) fills densely the torus T 2∗
and hence

inf F1(ζ ) = minϒ(x, y) = J−0 , sup F1(ζ ) = maxϒ(x, y) ≤ J+1 .
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Fig. 4. Graph of the function ϒ(x, y) on its domain T 2∗ , as the minimum of the functions χn(x, y), for
the cubic golden vector. The red curves (which are not straight lines) are the borders between the regions
of dominance, where a different function χn(x, y) gives the minimum in (107). The function F1(ζ ) is the
restriction of ϒ(x, y) along the dotted line of slope φ, by the property of “interpolation”, see (104–105). The
changes in the dominance, which take place when the line of slope φ crosses a red curve, correspond to the
corners of F1(ζ ) in Fig. 1

The minimum value J−0 = (1 − δ)1/3 of ϒ(x, y) is attained at the point given in
Lemma 22(c), choosing n such that x̃n ∈ [0, 1). On the other hand, by the convexity of
ϒ along the lines of slope φ, the maximum value

J ∗1 := maxϒ(x, y) (111)

is attained at some point belonging to some of the curves limiting the regions of domi-
nance illustrated in Fig. 4, Recall that the values J−0 and J ∗1 are associated, respectively,
to sharp upper and lower bounds for the maximum splitting distance (see Remark 2(a)).
Again, see Sect. 3.4 for the case of the cubic golden vector.

3.4. The particular case of the cubic golden frequency vector. As a continuation of
Sect. 2.3, we provide particular data concerning the function h1(ε) = F1(ζ ), and hence
the asymptotic estimate for the splitting, for the concrete case of the cubic golden fre-
quency vector introduced in (67).

First of all, recall that the function F1(ζ ) defined in (88), associated to the primary

resonances, is anO(δ)-perturbation of the 1-periodic function F
(0)
1 (ζ ) introduced in (92).

This one reaches its minimum value at the points ζn = n, and its maximum value at
the points ζ ′n = n + ξ0, with ξ0 ≈ 0.492049 in (93), where we have used the value of λ

obtained in (68). The minimum value is 1 and the maximum value is J (0)
1 ≈ 1.009141

by (95).
For the “perturbed” function F1(ζ ), we use the value of δ obtained in (69) and, in

Lemma 19, we get the values N− ≈ 3.65 and N+ ≈ 3.97. This says that, for ζ belonging
to a given interval In = [ζ ′n−1, ζ ′n] (where we have N (0)

1 (ζ ) = n), we can compute F1(ζ )

as the minimum of the functions f j (ζ ) for n − 3 ≤ j ≤ n + 3.
On the other hand, by Proposition 20 we have the following lower and upper bounds

for F1(ζ ),

J−0 ≈ 0.892341, J+1 ≈ 1.098383.

Author's personal copy



A. Delshams, M. Gonchenko, P. Gutiérrez

The strong separation condition (100) is fulfilled for the cubic golden vector, since the
value B−0 obtained in (70) is clearly greater than J+1 , and hence F1(ζ ) = F1(ζ ) for
this example. In fact, the upper bound J+1 can be replaced by the sharp upper bound J ∗1
defined in (111), and numerically we see that

J ∗1 ≈ 1.010619

(this value is reached at the confluence of the regions where χ−1, χ1, χ2 are dominant,
see Fig. 4).

4. Justification of the Asymptotic Estimate

We consider in this section the final step in the proof of our main result (Theorem 1),
which gives an exponentially small asymptotic estimate for the maximal splitting dis-
tance, i.e. the maximum of |M(θ)|. We write the Poincaré–Melnikov approximation (3)
as

M(θ) = μM(θ) +R(θ), (112)

where R(θ) denotes the remainder. Our aim is to ensure that the Poincaré–Melnikov
method predicts correctly the size of the splitting in the singular case μ = εr , extending
our results in the previous section for theMelnikov function M(θ), to the whole splitting
function M(θ). Recalling that such functions are gradients of scalar functions (see (2)
and (16)), it will be enough to work with the Melnikov and splitting potentials L(θ) and
L(θ), which appear below in Lemma 24. Our approach requires the following steps:

1. An asymptotic estimate for the dominant harmonic, given by k = S1(ε), of the
Melnikov potential L(θ);

2. An upper bound for the harmonics of the error term R(θ) in (112), mainly the one
associated to k = S1(ε), showing that it is also dominated by the asymptotic estimate
of the dominant harmonic of the first order approximation;

3. An upper bound for the sum of the non-dominant terms of the Fourier expansion
of the splitting potential L(θ), ensuring that it can be approximated by its dominant
harmonic.

In other words, we need to show that the asymptotic estimate for the dominant harmonic
in the Poincaré–Melnikov approximation is large enough to overcome the corresponding
harmonic of the error term, as well as an upper bound of its remaining harmonics.

The first step in the above list has been carried out in the previous section, and it is
the only step that depends strongly on the arithmetic properties of the frequency vector.
In this section, we outline the second and third steps, which are analogous to the case
of the quadratic golden number done in [DG04] (see also [DGG16]), and do not require
to use the specific arithmetic properties of cubic frequency vectors. The upper bounds
required in such steps are given in [DGS04], and are valid for any dimension of the
frequency vector ω, assuming only that it satisfies a Diophantine condition.

We start with describing our approach in a few words. First of all, notice that Theo-
rem 1 is stated in terms of the splitting functionM = ∇L introduced in (15). We write,
for the splitting potential and function,

L(θ) =
∑

k∈Z\{0}
Lk cos(〈k, θ〉 − τk), M(θ) = −

∑

k∈Z\{0}
Mk sin(〈k, θ〉 − τk),(113)
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with scalar (positive) coefficients Lk , and vector coefficients

Mk = k Lk ∈ R3. (114)

Although the Melnikov approximation (112) is in principle valid for real θ , it is standard
to see that it can be extended to a complex strip of suitable width (see for instance
[DGS04]), fromwhich one gets upper bounds for |Lk − μLk |, which imply the estimates
given below in Lemma 24, ensuring that the most dominant harmonic of the Melnikov
potential L(θ), obtained for k = S1(ε) (see (87)), is also the dominant one for the splitting
potential L(θ). Then, this dominant harmonic determines the asymptotic estimate for
the maximal splitting distance, given in Theorem 1.

With this idea, we consider the approximation of L(θ) given by its dominant har-
monic, as well as the corresponding remainder,

L(θ) = L(1)(θ) + F (2)(θ),

L(1)(θ) := LS1 cos(〈S1, θ〉 − τS1), F (2)(θ) :=
∑

k∈Z2

Lk cos(〈k, θ〉 − τk), (115)

where we denote Z2 := Z\{0, S1}, and we give below, in Lemma 24, an estimate for
the sum of all harmonics in the remainder F (2)(θ), in order to ensure that the maxi-
mal splitting distance can be approximated by the size of the coefficient of the most
dominant harmonic S1(ε). In fact, the estimate for F (2)(θ) is also given, by the expo-
nential smallness of the harmonics, in terms of its own dominant harmonic in the setZ2,
that we denote as S2(ε). With this in mind, we introduce as in (87) the continuous and
piecewise-smooth function

h2(ε) := min
k∈A\{S1}

g∗k (ε) = g∗S2(ε). (116)

It is not hard to see fromLemmas 16 and 17 that the corners of h1(ε), at which a change in
the first dominant harmonic takes place, are exactly the points ε̌ such that h1(ε̌) = h2(ε̌)
(such points are also the “lower corners” of h2(ε), but this function also has “upper
corners” where it coincides with the analogous function h3(ε) associated to the third
dominant harmonic; see [DGG16]).

The following lemma, analogous to the one established in [DG03,DG04], provides
an asymptotic estimate for the dominant harmonic LS1 , as well as an estimate for the
sum of all the harmonics in the remainder appearing in (115), As said before, we are not
directly interested in the splitting potential L(θ), but rather its derivative M(θ). Recall
that the coefficients Lk , introduced in (113), are all positive, and that the constant C0
in the exponentials has been defined in (74). On the other hand, we use the following
notation: for positive quantities, we write f � g if we can bound f ≤ c g with some
(positive) constant c not depending on ε and μ. In this way, we can write f ∼ g if
g � f � g, as already defined just before the statement of Theorem 1.

Lemma 24. For ε small enough and μ = εr with r > 3, one has:

(a) LS1 ∼ μ LS1 ∼
μ

ε1/6
exp

{

−C0h1(ε)

ε1/6

}

;

(b)
∑

k∈Z2

Lk ∼ 1

ε1/3
LS2 ∼

μ

ε1/3
exp

{

−C0h2(ε)

ε1/6

}

.
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Sketch of the proof. We only give the main ideas of the proof, since it is similar to
analogous results in [DG04, Lemmas 4 and 5] and [DG03, Lemma 3]. Our aim is to
show that, at first order inμ, the coefficients of the splitting potential can be approximated
by the coefficients of the Melnikov potential, i.e. the coefficientsRk of the error term in
the Melnikov approximation (112) can be neglected: |Rk |  μ |k| |Lk |, and hence

Lk ∼ μLk = μαk e
−βk ,

with the exponents βk = βk(ε) and the factors αk = αk(ε) introduced in (72–73).
As said at the beginning of this section, the estimates for the error term come from

upper bounds given in the paper [DGS04], where a quite general setting is considered.
The application of such upper bounds to our case is completely analogous to the case of
the golden quadratic frequencies considered in [DG04], differing only in some involved
exponents in (118–119) and (123).

To start, we see that the hypotheses in [DGS04, p. 788] are satisfied in our case, and
allow us to introduce the following values n, τ , l and α :

∗ the frequency vector ω has dimension n = 3 and satisfies the Diophantine condi-
tion (7) with the exponent τ = 2;

∗ the function h(x) in (9) is a trigonometric polynomial of degree l = 1, and hence
h(x0(s)) (see (11)) has poles of order 2l = 2 at s = ±iπ/2;

∗ the function f (ϕ) in (9) is analytic in a complex strip |Im ϕ| < ρ and, for any
0 < δ < ρ, satisfies a bound ‖ f ‖ρ−δ � 1/δα with α = 3 (where ‖ f ‖ρ−δ denotes a
norm on the strip |Im ϕ| ≤ ρ − δ taking into account the Fourier expansion of f (ϕ),
see [DGS04, p. 791] for a precise definition). This hypothesis provides a control on
the size of the perturbation near a “pole-like singularity of order α”.

In this situation, we know from [DGS04, Th. 10] that the “full” splitting function in-
troduced in (13) is a gradient in the angular variables, ˜M(s, θ) = ∂θ

˜L(s, θ), and it is
ωε-quasiperiodic (see (14)) and analytic on a complex strip

|s| ≤ κ − δ, |Im s| ≤ π

2
− δ, Re θ ∈ T3, |Im ϕ| ≤ ρ − δ (117)

for any given small δ = δ(ε) (to be chosen below appropriately), with an upper bound
for the remainder in such a strip. To write this upper bound, we denote ˜R(s, θ) :=
˜M(s, θ)−μM(θ −ωεs) the “full” remainder, and its supremum norm in the strip (117)
satisfies a bound of the type

∣

∣˜R
∣

∣

κ−δ,
π
2 −δ, ρ−δ

� μ2

δ20
+

μ2

δ17
√

ε
, (118)

provided we assume

ε � 1, μ � δ12, μ � δ7
√

ε. (119)

The exponents of δ in (118–119) have been computed through the formulas in [DGS04,
pp. 792–793], from the values n = 3, τ = 2, l = 1 and α = 3.

The ωε-quasiperiodicity plays an essential role, since it implies that the remainder
R(θ) = ˜R(0, θ) is exponentially small in ε on the real domain, θ ∈ T3. Notice that,
since the Melnikov and splitting functions M and M are both gradients, the remainder
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R =M−μM is also a gradient, and hence it has zero average:R0 = 0. For its remaining
Fourier coefficientsRk , k �= 0, we get from [DGS04, Lemma 11] the following bound,

|Rk | ≤
∣

∣˜R
∣

∣

κ−δ,
π
2 −δ, ρ−δ

e−̂βk (ε,δ). ̂βk(ε, δ) := (ρ − δ) |k| +
(π

2
− δ

)

|〈k, ωε〉| .
(120)

Notice that the new exponents ̂βk(ε, δ) are somewhat smaller than the exponents βk(ε)

for the coefficients of the Melnikov potential, introduced in (73).
As mentioned in Sect. 3.1, the main behavior of the coefficients Lk(ε) is given by

the exponents βk(ε), which have been written in (74) in terms of the functions gk(ε).
We focus our attention on the coefficient LS1 , associated to the dominant harmonic
k = S1(ε), which can be expressed in terms of the function h1(ε) introduced in (87).
In this way, we obtain an estimate for the factor e−βS1 , which provides the exponential
factor in (a). We also consider the factor αk , with k = S1(ε). Recalling from (103) that
|S1| ∼ ε−1/6, we get from (72) that αS1 ∼ ε−1/6, which provides the polynomial factor
in part (a). We also get an exponential estimate for the dominant term of the Melnikov
funcion,

∣

∣MS1

∣

∣ = |S1| LS1 ∼
μ

ε1/3
exp

{

−C0h1(ε)

ε1/6

}

. (121)

The estimate obtained is valid for the dominant coefficient LS1 of the Melnikov
potential L(θ). To complete the proof of part (a), one has to show that an analogous
estimate is also valid for the coefficient LS1 of the splitting potential L(θ), i.e. when the
error termR(θ) in the Poincaré–Melnikov approximation (112) is not neglected. Notice
that

∣

∣MS1

∣

∣ = |S1|LS1 and μ
∣

∣MS1

∣

∣ = μ |S1| LS1 are, respectively, the maximum value
of the harmonics MS1 sin(〈S1, θ〉 − τS1) and μMS1 sin(〈S1, θ〉 − σS1) (see (113)), and
their difference is the corresponding harmonic ofR(θ), whose maximum value is

∣

∣RS1

∣

∣.
Then, we have the bound |S1|

∣

∣LS1 − μLS1

∣

∣ ≤ ∣

∣RS1

∣

∣, and we have to show that, in our
singular case μ = εr , the coefficient of the error term is dominated by the one for the
Melnikov function:

∣

∣RS1

∣

∣ μ |S1| LS1 . (122)

Since this can beworked out straightforwardly as in [DG04, Lemma5],we give here only
the main ideas. We know from the upper bound (120) that

∣

∣RS1

∣

∣ is also exponentially

small, but the main difficulty lies in the fact that the exponential factor e−̂βS1 in (120)
is somewhat greater than the exponential factor e−βS1 in (121) (as we see by comparing
the expressions of the exponents βS1 and ̂βS1 ). This difficulty can be solved with an
appropiate choice of δ. Indeed, when such exponents are expressed in terms of the
function h1(ε), we see that the numerator C0 is replaced by another numerator ˜C0(δ) =
C0 +O(δ) obtained by replacing ρ and π/2 by ρ − δ and π/2 − δ, respectively, in the
definition (74). Choosing

δ = ε1/6, (123)

it turns out that both exponents are of the same order, since C0 ε−1/6 ∼ ˜C0(δ) ε−1/6.
Once this equivalence has been established, we only have to compare the polynomial

factors i.e. we need that
μ2

δ20
+

μ2

δ17
√

ε
= 2μ2

ε10/3
 μ

ε1/3
, which is true for μ = εr if
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r > 3. The assumptions (119) are also satisfied with this choice of r , and this proves the
dominance (122).

The proof of part (b) is carried out in similar terms. For the dominant harmonic
k = S2(ε) inside the set Z2, we also get |S2| ∼ ε−1/6 as in (103), and an exponentially
small estimate for LS2 with the function h2(ε) defined in (116). Such estimates are also
valid if one considers the whole sum in (b), since for any given ε the terms of this sum
can be bounded by a geometric series and, hence, it can be estimated by its dominant
term (see [DG04, Lemma 4] for more details). ��

With regard to the proof of Theorem 1,we need tomeasure the size of the perturbation
F (2)(θ) in (115) with respect to the coefficient LS1 of the approximation L(1)(θ). Since
by Lemma 24 the size of F (2)(θ) is given by the size of its dominant harmonic, we
introduce the following small parameter,

η2,1 := LS2

LS1
∼ exp

{

−C0(h2(ε)− h1(ε))

ε1/6

}

,

as a measure of the perturbation F (2)(θ) in (115), relatively to the size of the domi-
nant coefficient LS1 . Although we define the parameter η2,1 in terms of the coefficients
of L(θ), we can also define it from the coefficients of its derivative, the splitting func-
tion M(θ) = ∇L(θ), in view of (114) and the fact that the respective factors have the
same magnitude: |S1| ∼ |S2| ∼ ε−1/6.

Notice that the parameter η2,1 is always exponentially small in ε, providedwe exclude
some small neighborhoods of the “transition values” ε̌, whereLS1 andLS2 have the same
magnitude.

Proof of Theorem 1. Applying Lemma 24, we see that the coefficient of the dominant
harmonic of the splitting functionM(θ) is greater than the sum of all other harmonics.
More precisely, we have for ε→ 0 the estimate

max
θ∈T3
|M(θ)| = ∣

∣MS1

∣

∣ (1 +O(η2,1)) ∼
∣

∣MS1

∣

∣ ∼ |S1|LS1 , (124)

which implies the result, using the asymptotic estimate (103) for |S1|, and the asymptotic
estimate for

∣

∣MS1

∣

∣, in terms of h1(ε), deduced from Lemma 24(a).
Nevertheless, the previous argument does not apply directly when ε is close to a

transition value ε̌ where h1 and h2 coincide, i.e. the first and second dominant harmonics
have the same magnitude. Eventually, more than two harmonics (but a finite number,
according to the arguments given in Lemma 17) might also have the same magnitude
and become dominant. In such cases, the parameter η2,1 is not exponentially small, but
we can replace the main term in (124) by a finite number of terms, plus an exponentially
small perturbation, and by the properties of Fourier expansions the maximum value
of |M(θ)| can be compared to any of its dominant harmonics. ��
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