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1 Introduction

The aim of this work is to provide asymptotic estimates for the splitting of
separatrices in a perturbed 3-degree-of-freedom Hamiltonian system, associated to
a two-dimensional whiskered torus (invariant hyperbolic torus) whose frequency
ratio is a quadratic irrational number. We show that the dependence of the
asymptotic estimates on the perturbation parameter is described by some functions
which satisfy a periodicity property, and whose behavior depends strongly on the
arithmetic properties of the frequencies.

First, we describe the Hamiltonian system to be studied. It is also considered
in [6], as a generalization of the famous Arnold’s example [1], and provides a model
for the behavior of a nearly-integrable Hamiltonian system in the vicinity of a single
resonance (see [4] for a motivation). In canonical coordinates .x; y; '; I/ 2 T � R �
T
2 � R

2, we consider a perturbed Hamiltonian

H.x; y; '; I/ D H0.x; y; I/C �H1.x; '/: (1)

H0.x; y; I/ D h!"; Ii C 1

2
hƒI; Ii C y2

2
C cos x � 1; (2)

H1.x; '/ D cos x �
X

k2�0
e��jkj cos.hk; 'i � 
k/: (3)
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For the integrable Hamiltonian H0, we consider a vector of fast frequencies

!" D !p
"
; ! D .1;�/; (4)

where the frequency ratio� is a quadratic irrational number. In this way, our system
has two parameters " > 0 and �, but we assume them linked by a relation of the
kind � D "p, p > 0 (the smaller p the better). Thus, if we consider " as the unique
parameter, we have a singular or weakly hyperbolic problem for " ! 0 (see [4] for
a discussion about singular and regular problems).

On the other hand, notice that H0 consists of a classical pendulum and two rotors
(in the coordinates x; y and '; I respectively). Then, we see that H0 has a family
of two-dimensional whiskered tori, with coincident whiskers (invariant manifolds).
Such tori can be indexed by the (constant) action I, and have frequency vectors
!" C ƒI. We assume that the matrix ƒ is such that the condition of isoenergetic
nondegeneracy is satisfied (see, for instance, [6]). Among the tori, we fix our
attention on the torus given by I D 0,

T0 W .0; 0; �; 0/; � 2 T
2;

whose inner flow is given, in this parameterization, by P� D !". This torus has a
homoclinic whisker (i.e., coincident stable and unstable whiskers),

W0 W .x0.s/; y0.s/; �; 0/; s 2 R; � 2 T
2;

where x0.s/ D 4 arctan es, y0.s/ D 2= cosh s (the upper separatrix of the classical
pendulum). The inner flow on W0 is given by Ps D 1, P� D !".

Concerning the perturbation H1, it is given by a constant � > 0 (the complex
width of analyticity in the angles '), and phases 
k that, for the purpose of this
work, can be chosen arbitrarily.

Under the hypotheses described, the hyperbolic KAM theorem (see, for instance,
[8]) can be applied to the perturbed Hamiltonian (1)–(3). We have that, for � ¤
0 small enough, the whiskered torus T0 persists with some shift and deformation
giving rise to a perturbed torus T , with perturbed local stable and unstable whiskers.

Such local whiskers can be extended to global whiskers W s, Wu but, in general,
for � ¤ 0 they do not coincide anymore, and one can introduce a splitting function
giving the distance between the whiskers in the directions of the actions I 2 R

2:
denoting J s;u.�/ parameterizations of a transverse section of both whiskers, one
can define M.�/ WD J u.�/ � J s.�/, � 2 T

2. In fact, this function turns out to be
the gradient of the (scalar) splitting potential: M.�/ D rL.�/ (see [3, Sect. 5.2],
and also [7]).

In (4), we deal with the following 24 quadratic numbers

ŒN1� ; ŒN2� ; : : : ; Œ13� ; Œ1; 2� ; : : : ; Œ1; 12� ; (5)
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where we denote a quadratic number according to its periodic part in the continued
fraction, see (8).

Next, we establish the main result of this work, providing two types of asymptotic
estimates for the splitting, as " ! 0. On one hand, we give an estimate for the
maximal splitting distance, i.e., for the maximum of jM.�/j, � 2 T

2. On the other
hand, we show that for most values of " ! 0 there exist four transverse homoclinic
orbits, associated to simple zeros �� of M.�/ (i.e., nondegenerate critical points of
L.�/) and, for such homoclinic orbits, we obtain an estimate for the transversality
of the splitting, given by the minimum eigenvalue (in modulus) of the matrices
DM.��/.

We use the notation f 	 g if we can bound c1jgj � jf j � c2jgj with positive
constants c1; c2 not depending on ", �.

Theorem 1 Assume the conditions described above for the Hamiltonian (1)–(3),
and that " is small enough and � D "p, p > 3. Then, there exist continued functions
h1."/ and h2."/ (defined in (17)), periodic in ln " and satisfying 1 � h1."/ � h2."/,
and a positive constant C0 (given in (16)), such that:

(i) for the maximal splitting distance, we have the estimate

max
�2T2

jM.�/j 	 �p
"

exp

�
�C0h1."/

"1=4

	
I

(ii) the splitting function M.�/ has exactly four zeros ��, all simple, for all "
except for a small neighborhood of a finite number of geometric sequences
of ";

(iii) at each zero �� of M.�/, the minimal eigenvalue of DM.��/ satisfies

m� 	 �"1=4 exp

�
�C0h2."/

"1=4

	
:

For the proof of this theorem, we apply the Poincaré–Melnikov method, which
provides a first order approximation

M.�/ D �rL.�/C O.�2/ (6)

in terms of the Melnikov potential, which can be defined by integrating the
perturbation H1 along the trajectories of the unperturbed homoclinic whisker W0 :

L.�/ WD �
Z 1

�1
H1.x0.t/; � C !"t/ dt: (7)

Since this first order approximation is exponentially small in ", in principle the
approximation (6) cannot be directly applied in our singular problem with � D
"p. However, using suitable bounds for the error term O.�2/, given in [6], one
can see that for p > 3 the first order approximation given by the Melnikov
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potential overcomes the error term and provides the right asymptotic estimates for
the splitting. Such estimates come from the size of dominant harmonics in the
Fourier expansion of (7), and studying their dependence on ". More precisely, to
estimate the maximal splitting one dominant harmonic is enough and, to estimate
the transversality of the splitting, two dominant harmonics are required (excluding
the values of " such that the second and third harmonics are of the same magnitude,
which could give rise to bifurcations in the homoclinic orbits and would require a
further study).

The remaining sections of this work are devoted to the definition of the functions
h1."/ and h2."/, making emphasis on their dependence on the arithmetic properties
of the quadratic number�.

2 Continued Fractions and Resonant Sequences

We review briefly the technique developed in [5] for studying the resonances of
quadratic frequencies. Let 0 < � < 1 be a quadratic irrational number. It is well-
known that it has an infinite continued fraction

� D Œa1; a2; a3; : : :� D 1

a1 C 1

a2 C 1

a3 C � � �

; an 2 Z
C; n � 1 (and a0 D 0);

(8)
which is eventually periodic, i.e., periodic starting at some al. For a purely m-
periodic continued fraction� D Œa1; : : : ; am� we introduce the matrix

U D .�1/mA�1
1 � � � A�1

m ; where Al D
 

al 1

1 0

!
; l D 1; : : : ;m:

It is well-known that quadratic vectors satisfy a Diophantine condition

jhk; !ij � 


jkj ; 8k 2 Z
2 n f0g:

With this in mind, we define the “numerators”


k WD jhk; !ij � jkj; k 2 Z
2 n f0g (9)

(for integer vectors, we use the norm j�j D j�j1). Our aim is to find the integer vectors
k which give the smallest values 
k; we call such vectors the primary resonances.

All vectors k 2 Z
2 n f0g with jhk; !ij < 1=2 are subdivided into resonant

sequences:

s.j; n/ WD Unk0.j/; n D 0; 1; 2; : : : ; (10)



A Methodology for Obtaining Asymptotic Estimates for the Exponentially. . . 35

where the initial vector k0.j/ D .� rint.j�/; j/, j 2 Z
C, satisfies

1

2�
< jhk0.j/; !ij < 1

2
; (11)

� being the eigenvalue of U with � > 1. For each j 2 Z
C satisfying (11), it was

proved in [5, Theorem 2] (see also [2]) that, asymptotically, the resonant sequence
s.j; n/ exhibits a geometric growth and the sequence 
s.j;n/ has a limit 
�

j :

js.j; n/j D Kj�
n C O.��n/; 
s.j;n/ D 
�

j C O.��2n/; as n ! 1; (12)

where Kj and 
�
j can be determined explicitly for each resonant sequence (see

explicit formulas in [5]). We select the minimal of 
�
j :


� WD lim inf
jkj!1


k D min
j

�

j D 
�
j0
> 0: (13)

The integer vectors of the corresponding sequence s.j0; n/ are the primary reso-
nances, and we call the secondary resonances the integer vectors belonging to any of
the remaining resonant sequences s.j; n/, j ¤ j0. We also call by the main secondary
resonances the sequence s.j1; n/ which is linearly independent with s.j0; n/ and
gives the smallest limit 
�

j1
among the secondary resonances.

3 The Functions h1."/ and h2."/

Taking into account the form of H1 in (3), we present the Melnikov potential (7) in
its Fourier expansion. Using (4) and (9), we present the coefficients in the form

Lk D 2�jhk; !"ij e��jkj

sinh j�
2
hk; !"ij D ˛k e�ˇk ; ˛k � 4�
k

jkjp" ; ˇk D �jkj C �
k

2jkjp" :
(14)

For any given ", we find the dominant harmonics Lk."/which correspond essentially
to the smallest exponents ˇk."/.

The exponents ˇk."/ in (14) can be presented in the form

ˇk."/ D C0
"1=4

gk."/; gk."/ WD Q
1=2k

2

"�
"

"k

�1=4
C
�"k

"

�1=4
#
; (15)

where

"k WD D0

Q
 2k
jkj4 ; Q
k D 
k


� ; C0 D .2��
�/1=2; D0 D
�
�
�

2�

�2
:

(16)
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Fig. 1 Graphs of the functions h1."/ (solid blue) and h2."/ (dash-dot blue) for Œ1; 2� D p
3 � 1.

Red lines are the primary functions gs.j0;n/."/, and green lines correspond to the main secondary
functions gs.j1;n/."/

Since the coefficients Lk are exponentially small in ", it is more convenient to work
with the functions gk, whose smallest values correspond to the largest Lk. To this
aim, it is useful to consider the graphs of the functions gk."/, k 2 Z

2 n f0g, in order
to detect the minimum of them for a given value of ".

We know from (15) that the functions gk."/ have their minimum at " D "k and the
corresponding minimal values are gk."k/ D Q
1=2k . For the integer vectors k D s.j; n/
belonging to a resonant sequence (10), using the approximations (12), we have

"s.j;n/ � D0. Q
�
j /
2

K 4
j �

4n
; gs.j;n/."/ � . Q
�

j /
1=2

2

"�
"

"s.j;n/

�1=4
C
�
"s.j;n/

"

1=4
�#

; as n ! 1:

Taking into account such approximations, we have a periodic behavior of the
functions with respect to ln ", as we see in Fig. 1 (where a logarithmic scale for
" is used).

We define, for any given ", the function h1."/ and h2."/ as

h1."/ WD min
k

gk."/ D gS1."/; h2."/ WD min
k lin:indep:of S1

gk."/ D gS2."/; (17)

with some integer vectors S1."/ and S2."/ realizing such minima. The functions
are continuous and 4 ln�-periodic in ln ". It turns out that for the 24 quadratic
numbers (5), the integer vector S1."/ providing h1."/ always corresponds to a
primary resonance, defined in (13). On the other hand, the vector S2."/ providing
h2."/may correspond to primary or main secondary resonances in different intervals
of " (see Fig. 1 for an illustration for the number Œ1; 2� D p

3 � 1). There is a finite
number of geometric sequences of ", where a change in S2."/ occurs. These points
require a special study for the transversality and they are excluded in Theorem 1.



A Methodology for Obtaining Asymptotic Estimates for the Exponentially. . . 37

Acknowledgements This work has been partially supported by the Spanish MINECO-FEDER
grant number MTM2012-31714 and the Catalan grant 2009SGR859. The author MG has also
been supported by the DFG Collaborative Research Center TRR 109 “Discretization in Geometry
and Dynamics”.

References

1. V.I. Arnold, “Instability of dynamical systems with several degrees of freedom”. Soviet Math.
Dokl. 5(3) (1964), 581–585.

2. A. Delshams, M. Gonchenko, and P. Gutiérrez, “Exponentially small asymptotic estimates for
the splitting of separatrices to whiskered tori with quadratic and cubic frequencies”. Electron.
Res. Ann. Math. Sci. 21 (2014), 41–61.

3. A. Delshams and P. Gutiérrez, “Splitting potential and the Poincaré–Melnikov method for
whiskered tori in Hamiltonian systems”. J. Nonlinear Sci. 10(4) (2000), 433–476.

4. A. Delshams and P. Gutiérrez, “Homoclinic orbits to invariant tori in Hamiltonian systems”.
In C.K.R.T. Jones and A.I. Khibnik, editors, “Multiple-Time-Scale Dynamical Systems”
(Minneapolis, MN, 1997), 122, pages. 1–27. Springer-Verlag, New York, 2001.

5. A. Delshams and P. Gutiérrez, “Exponentially small splitting of separatrices for whiskered tori
in Hamiltonian systems”. Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI)
300 (2003), 87–121; translation in J. Math. Sci. 128(2) (2005), 2726–2746.

6. A. Delshams, P. Gutiérrez, and T.M. Seara, “Exponentially small splitting for whiskered tori
in Hamiltonian systems: flow-box coordinates and upper bounds”. Discrete Contin. Dyn. Syst.
11(4) (2004), 785–826.

7. L.H. Eliasson, “Biasymptotic solutions of perturbed integrable Hamiltonian systems”. Bol. Soc.
Brasil. Mat. 25(1) (1994), 57–76.

8. L. Niederman, “Dynamics around simple resonant tori in nearly integrable Hamiltonian
systems”. J. Differential Equations 161(1) (2000), 1–41.


	Part I Hamiltonian Systems and Celestial Mechanics
	A Methodology for Obtaining Asymptotic Estimates for the Exponentially Small Splitting of Separatrices to Whiskered Tori with Quadratic Frequencies
	1 Introduction
	2 Continued Fractions and Resonant Sequences
	3 The Functions h1() and h2()
	References



